A dual-emission pyrene-based new fluorescent probe (-(4-nitro-phenyl)-'-pyren-1-ylmethyl-ene-ethane-1,2-diamine (PyDA-NP)) displays green fluorescence for nitric oxide (NO) sensing, whereas it exhibits blue emission in the aggregated state. The mechanism of nitric oxide (NO/NO) sensing is based on N-nitrosation of aromatic secondary amine, which was not interfered by reactive oxygen species and reactive nitrogen species. The aggregation-induced enhancement of emission (AIEE) behaviors of the PyDA-NP could be attributed to the restriction of intramolecular rotation and vibration, resulting in rigidity enhancement of the molecules. The AIEE behavior of the probe was well established from fluorescence, dynamic light scattering, scanning electron microscopy, transmission electron microscopy, X-ray diffraction, optical fluorescence microscopy, and time-resolved photoluminescence studies. In a HO/CHCN binary mixture (8:2 v/v), the probe showed maximum aggregation with extensive (833-fold) increases in fluorescence intensity and high quantum yield (0.79). The aggregated state of the probe was further applied for the detection of nitroexplosives. It displayed efficient sensing of 2,4,6-trinitrophenol (TNP), corroborating mainly the charge-transfer process from pyrene to a highly electron-deficient TNP moiety. Furthermore, for the on-site practical application of the proposed analytical system, a contact-mode analysis was performed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6645121 | PMC |
http://dx.doi.org/10.1021/acsomega.8b01294 | DOI Listing |
Front Neurosci
December 2024
Institute of Reconstructive Neurobiology, Medical Faculty and University Hospital of Bonn, University of Bonn, Bonn, Germany.
Brain aging is a chronic process linked to inflammation, microglial activation, and oxidative damage, which can ultimately lead to neuronal loss. Sialic acid-binding immunoglobulin-like lectin-11 (SIGLEC-11) is a human lineage-specific microglial cell surface receptor that recognizes -2-8-linked oligo-/polysialylated glycomolecules with inhibitory effects on the microglial inflammatory pathways. Recently, the gene locus was prioritized as a top tier microglial gene with potential causality to Alzheimer's disease, although its role in inflammation and neurodegeneration remains poorly understood.
View Article and Find Full Text PDFInt J Vasc Med
December 2024
Department of Medical-Surgical Therapy, Medicine and Health Sciences Faculty, University of Extremadura, Badajoz, Spain.
Diabetes mellitus (DM) is one of the most common chronic endocrine diseases, characterized by hyperglycemia, due to abnormal nitric oxide synthesis. The trend of an increase in the number of patients with DM continues. The medical and economic burden of DM is not only associated with hyperglycemia management but also with the management of DM-related complications.
View Article and Find Full Text PDFChin J Integr Med
January 2025
Department of Anaesthesiology, Nanjing Drum Tower Hospital, Nanjing Drum Tower Hospital Clinical College, Nanjing University of Chinese Medicine, Nanjing, 210008, China.
Objective: To illustrate the role of dehydrocorydaline (DHC) in chronic constriction injury (CCI)-induced neuropathic pain and the underlying mechanism.
Methods: C57BL/6J mice were randomly divided into 3 groups by using a random number table, including sham group (sham operation), CCI group [intrathecal injection of 10% dimethyl sulfoxide (DMSO)], and CCI+DHC group (intrathecal injection of DHC), 8 mice in each group. A CCI mouse model was conducted to induce neuropathic pain through ligating the right common sciatic nerve.
Sci Rep
January 2025
Department of Physical Chemistry, Gdańsk University of Technology, Narutowicza 11/12, Gdańsk, 80-233, Poland.
The study investigated the degradation of 3-methoxy-1-propanol (3M1P) by OH using the M06-2X/6-311++G(d, p) level, with CCSD(T) single-point corrections. We focused on hydrogen atom abstraction from various alkyl groups within the molecule. The rate coefficient for 3M1P degradation was calculated from the sum of the rate coefficients corresponding to the removal of H-atoms from primary (-CH), secondary (-CH-), tertiary (-CH< ), and alcohol (-ΟH) groups.
View Article and Find Full Text PDFFEMS Microbiol Ecol
January 2025
Center for Pan-third Pole Environment, Lanzhou University, Lanzhou, China.
In polar and alpine regions, global warming and landform changes are draining lakes, transforming them into permafrost with altered microbial communities and element cycling. In this study, we investigated bacterial and archaeal (prokaryotic) community changes in the newly exposed sediment of Zonag Lake (Tibetan Plateau), focusing on prokaryotic diversity, community structure, and genes involved in carbon fixation and nitrogen cycling across lateral (up to 800 m) and vertical (up to 80 cm) horizons. The results showed that prokaryotic richness decreased across the lateral horizons, coinciding with reductions in carbon concentrations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!