Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this paper, we report a simple two-step approach for the synthesis of large graphene oxide (GO) sheets with lateral dimensions of ≈10 μm or greater. The first step is a pretreatment step involving electrochemical exfoliation of graphite electrode to produce graphene in a mixture of HSO and HPO. The second step is the oxidation step, where oxidation of exfoliated graphene sheets was performed using KMnO as the oxidizing agent. The oxidation was carried out for different times ranging from 1 to 12 h at ∼60 °C. Prepared GO batches were characterized using a number of spectroscopy and microscopy techniques such as X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR), and UV-visible spectroscopy. Raman and thermogravimetric analysis techniques were used to study the degree of oxidation in the as-synthesized GO batches. The UV-visible absorption spectrum showed an intense peak at 230 nm and an adjacent band at 300 nm corresponding to π-π* and n-π* transitions in all samples. Normalized FTIR plots were used to calculate the relative percentages of oxygen-containing functional groups, which were found to be maximum in GO (6 h). Boehm titration was used to quantify the functional groups present on the GO surface. Overall GO sheets obtained after 6 h of oxidation, GO (6 h), were found to be the best. XRD pattern of GO (6 h) revealed a characteristic peak at 2θ = 8.88°, with the corresponding interplanar spacing between the layers being 0.995 nm, which is among the best with respect to the previous methods reported in the literature. Raman spectroscopy showed that the degree of defect ( / ) area ratio for GO (6 h) was 1.24, which is higher than that obtained for GO (1.18) prepared by widely used Marcano's approach.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6645570 | PMC |
http://dx.doi.org/10.1021/acsomega.8b01283 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!