Poly(tetrafluoroethylene)-stabilized Pd nanoparticles (PTFE-PdNPs) were prepared in water with 4-methylphenylboronic acid as a reductant and characterized using powder X-ray diffraction, transmission electron microscopy (TEM), X-ray photoelectron spectroscopy, and inductively coupled plasma-atomic emission spectroscopy (ICP-AES). Small PdNPs with a fairly uniform size were obtained in the presence of PTFE, whereas aggregation of palladium was observed in the absence of PTFE. PTFE-PdNPs showed high catalytic activity for the Suzuki coupling reaction in water and were reused without any loss of activity. No palladium species were observed by ICP-AES analysis in the reaction solution after the reaction, nor was any change in particle size observed after the recycle experiment. PTFE-PdNPs also exhibited excellent catalytic activity and reusability for the Heck reaction in water. Although palladium species were not detected in the reaction solution after the reaction, aggregates and smaller sizes of PdNPs were observed in the TEM image of the recovered catalyst. PTFE was also useful as the stabilizer of rhodium nanoparticles (RhNPs) prepared by reduction with NaBH. PTFE-RhNPs showed high catalytic activity and reusability toward arene hydrogenation under mild conditions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6645410 | PMC |
http://dx.doi.org/10.1021/acsomega.8b01338 | DOI Listing |
J Am Chem Soc
January 2025
CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
Well-defined single-atom catalysts (SACs) serve as ideal model systems for directly comparing experimental results with theoretical calculations, offering profound insights into heterogeneous catalytic processes. However, precisely designing and controllably synthesizing SACs remain challenging due to the unpredictable structure evolution of active sites and generation of embedded active sites, which may bring about steric hindrance during chemical reactions. Herein, we present the precious nonpyrolysis synthesis of Re SACs with a well-defined phenanthroline coordination supported by NiO (Re-phen/NiO).
View Article and Find Full Text PDFBioconjug Chem
January 2025
Department of Biochemistry, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, ul. Lwowska 1, 87-100 Torun, Poland.
l-Asparaginase (l-ASNase) catalyzes the hydrolysis of l-asparagine, leading to its depletion and subsequent effects on the cellular proliferation and survival. In contrast to normal cells, malignant cells that lack asparagine synthase are extremely susceptible to asparagine deficiency. l-ASNase has been successfully employed in treating pediatric leukemias and non-Hodgkin lymphomas; however, its usage in adult patients and other types of cancer is limited due to significant side effects and drug resistance.
View Article and Find Full Text PDFJ Med Chem
January 2025
Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, School of Pharmaceutical Sciences, Central University of Punjab, Bathinda 151 401, India.
The multifactorial nature of cancer requires treatment that involves simultaneous targeting of associated overexpressed proteins and cell signaling pathways, possibly leading to synergistic effects. Herein, we present a systematic study that involves the simultaneous inhibition of human topoisomerases (hTopos) and histone deacetylases (HDACs) by multitargeted quinoline-bridged hydroxamic acid derivatives. These compounds were rationally designed considering pharmacophoric features and catalytic sites of the cross-talk proteins, synthesized, and assessed for their anticancer potential.
View Article and Find Full Text PDFACS Synth Biol
January 2025
State Key Laboratory of Fine Chemicals, Frontiers Science Centre for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian 116024, China.
Cannabichromene (CBC), a valuable but extremely low-abundance component of cannabinoids in L., is known for its ability to promote neurogenesis. The scarcity of CBC in natural is primarily attributed to the inefficiency of the 1-deoxy-D-xylulose 5-phosphate/2-C-methyl-D-erythritol 4 phosphate (DOXP/MEP) and fatty acid metabolism pathways, along with the limited competitive advantage of cannabichromenic acid synthetase (CBCAS) compared to other cannabinoid synthases.
View Article and Find Full Text PDFLangmuir
January 2025
Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, China.
Constructing wide and narrow band gap heterogeneous semiconductors is a method to improve the activity of photocatalysts. In this paper, CMS/ZnO heterojunctions were prepared by solvothermal loading of ZnO particles on the surface of CuMoS nanosheets. The photocatalytic H precipitation rate is about 545 μmol·g·h, which is 6.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!