A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Versatile Approach for Reducing Propagation Loss in Wet-Electrospun Polymer Fiber Waveguides. | LitMetric

Versatile Approach for Reducing Propagation Loss in Wet-Electrospun Polymer Fiber Waveguides.

ACS Omega

Department of Electrical and Electronic Information Engineering and Department of Environmental and Life Sciences, Toyohashi University of Technology, Toyohashi, Aichi 441-8580, Japan.

Published: June 2018

Wet-electrospun (WES) polymer micron and submicron fibers are promising building blocks for small, flexible optical fiber devices, such as waveguides, sensors, and lasers. WES polymer fibers have an inherent cylindrical geometry similar to that of optical fibers and a relatively large aspect ratio. Furthermore, WES fibers can be produced using low-cost and low-energy manufacturing techniques with large-area fabrication and a large variety of materials. However, the high propagation loss in the fibers, which is normally on the order of tens or thousands of decibels per centimeter in the visible light region, has impeded the use of these fibers in optical fiber devices. Here, the origin of propagation losses is examined to develop a comprehensive and versatile approach to reduce these losses. The excess light scattering that occurs in fibers due to their inhomogeneous density is one of the primary factors in the propagation loss. To reduce this loss, the light transmission characteristics were investigated for single WES polymer fibers heated at different temperatures. The propagation loss was significantly reduced from 17.0 to 8.1 dB cm at 533 nm wavelength, by heating the fibers above their glass transition temperature, 49.8 °C. In addition, systematic verification of the possible loss factors in the fibers confirmed that the propagation loss reduction could be attributed to the reduction of extrinsic excess scattering loss. Heating WES polymer fibers above their glass transition temperature is a versatile approach for reducing the propagation loss and should be applicable to a variety of WES fibers. This finding paves the way for low-loss WES fiber waveguides and their subsequent application in small, flexible optical fiber devices, including waveguides, sensors, and lasers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6644405PMC
http://dx.doi.org/10.1021/acsomega.8b00835DOI Listing

Publication Analysis

Top Keywords

propagation loss
24
wes polymer
16
versatile approach
12
fibers
12
optical fiber
12
fiber devices
12
polymer fibers
12
loss
9
approach reducing
8
reducing propagation
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!