Utilizing Molecular Hyperpolarizability for Trace Analysis: A Surface-Enhanced Hyper-Raman Scattering Study of Uranyl Ion.

ACS Omega

Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556, United States.

Published: June 2018

Surface-enhanced hyper-Raman scattering (SEHRS), the nonlinear analog of surface-enhanced Raman scattering (SERS), provides unique spectral signatures arising from the molecular hyperpolarizability. In this work, we explore the differences between SERS and SEHRS spectra obtained from surface-bound uranyl ion. Exploiting the distinctive SEHRS bands for trace detection of the uranyl ion, we obtain excellent sensitivity (limit of detection = 90 ppb) despite the extreme weakness of the hyper-Raman effect. We observe that binding the uranyl ion to the carboxylate group of 4-mercaptobenzoic acid (4-MBA) leads to significant changes in the SEHRS spectrum, whereas the surface-enhanced Raman scattering (SERS) spectrum of the same complex is little changed. The SERS and SEHRS spectra are also examined as a function of both substituent position, using 2-MBA, 3-MBA, and 4-MBA, and the carbon chain length, using 4-mercaptophenylacetic acid and 4-mercaptophenylpropionic acid. These results illustrate that the unique features of SEHRS can yield more information than SERS in certain cases and represent the first application of SEHRS for trace analysis of nonresonant molecules.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6644803PMC
http://dx.doi.org/10.1021/acsomega.8b01147DOI Listing

Publication Analysis

Top Keywords

uranyl ion
16
molecular hyperpolarizability
8
trace analysis
8
surface-enhanced hyper-raman
8
hyper-raman scattering
8
surface-enhanced raman
8
raman scattering
8
scattering sers
8
sers sehrs
8
sehrs spectra
8

Similar Publications

Uranium Extraction from Seawater via Hydrogen Bond Porous Organic Cages.

J Am Chem Soc

January 2025

Key Laboratory of Polyoxometalate and Reticular Material Chemistry of the Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China.

Uranium (U), a high-performing, low-emission energy source, is driving sustainable economic growth. Herein, we synthesized two crystalline phases (HPOC-α and β) by an unreported amidoxime organic cage used for uranium capture. The revealed crystal structures and uranium adsorption test showed that accessible functional groups were essential to uranyl ions sorption.

View Article and Find Full Text PDF

3D-Porous Carbon Nitride Through Proton Regulation and Photocatalytic Synergy for Efficient Uranium Extraction From Seawater.

Small

December 2024

Key Laboratory of Photonic and Electronic Bandgap Materials Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, China.

Extracting uranium from seawater is crucial for tapping oceanic resources vital to future energy supply. This study synthesized a novel nitrogen vacancy carbon nitride (NCN) grafted polyethyleneimine (PEI) composite material (NCNP). Experiments and molecular dynamics simulations reveal that NCNP effectively hinders the diffusion of uranyl ions (UO ) to the NCN surface, thereby inhibiting electron transfer reactions.

View Article and Find Full Text PDF

Uranyl Speciation in Carbonate-Rich Hydrothermal Solutions: A Molecular Dynamics Study.

Inorg Chem

December 2024

State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing, Jiangsu 210023, China.

In this study, we employed classical molecular dynamics (CMD) and first-principles molecular dynamics (FPMD) simulations to investigate the speciation of uranyl in carbonate-rich hydrothermal solutions. The association constants (log) of uranyl carbonate complexes were derived from the potential of mean forces (PMFs) obtained from CMD simulations, and the acid constants (ps) of uranyl aqua ions were calculated using the FPMD-based vertical energy gap method. The results showed that uranyl ions could form stable mono- and bi-carbonate complexes at elevated temperatures and that uranyl aqua ions strongly hydrolyzed in neutral solutions at temperatures exceeding 473 K.

View Article and Find Full Text PDF

Uranium is most stable when it is exposed to oxygen or water in its +6 oxidation state as the uranyl (UO) ion. This ion is subsequently particularly stable and very resistant to functionalization due to the inverse trans effect. Uranyl oxo ligands are typically not considered good hydrogen bond acceptors due to their weak Lewis basicity; however, the ligands bound in the equatorial plane greatly affect the strength of the oxo ligands' hydrogen bonding.

View Article and Find Full Text PDF

Interconversion of the oxidation states of uranium enables separations and reactivity schemes involving this element and contributes to technologies for recycling of spent nuclear fuels. The redox behaviors of uranium species impact these processes, but use of electrochemical methods to drive reactions of molecular uranium complexes and to obtain molecular insights into the outcomes of electrode-driven reactions has received far less attention than it deserves. Here, we show that electro-reduction of the uranyl ion (UO) can be used to promote stepwise functionalization of the typically unreactive oxo groups with exogenous triphenylborane (BPh) serving as a moderate electrophile, avoiding the conventional requirement for a chemical reductant.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!