This work aimed at investigating electrocatalytic hydrodechlorination (ECH) mechanisms of chlorophenols (CPs) on a Pd-modified cathode. Experiments on the ECH of 2,4-dichlorophenol were conducted under extreme test conditions, i.e., with various buffer solutions and several sodium salt solutions as supporting electrolytes. Buffer solutions promote dechlorination due to their property of retarding the alkalinity of a solution. ECH was found to be significantly inhibited by sulfite. Experimental results showed that sulfite poisoning on Pd catalysts was reversible. Protonation may account, at least in part, for the observed high pH dependency of ECH, which proceeded rapidly, with lower apparent activation energy ( ) in the acidic electrolyte. In addition, pH influenced the selectivity of dechlorination of CPs. It was inferred that the ECH of CPs on the Pd-modified electrode was a preactivated electrocatalytic reaction.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6641951 | PMC |
http://dx.doi.org/10.1021/acsomega.8b00624 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!