Sensitivity enhancement of optical oxygen sensors is crucial for the characterization of nearly anoxic systems and oxygen quantification in trace amounts. In this work, for the first time we presented the introduction of silver nanowires (AgNWs) as a sensitivity booster for optical oxygen sensors based on AgNWs-palladium octaethylporphine-poly(methyl methacrylate) (AgNWs@PdOEP-PMMA) microfiber mats prepared by electrospinning. Herein, a series of sensing microfiber mats with different loading ratios of high aspect ratio AgNWs were fabricated, and the corresponding sensitivity enhancement was systematically investigated. With increasing incorporated ratios, the AgNWs@PdOEP-PMMA-sensing microfiber mats exhibited a swift response (approx. 1.8 s) and a dramatic sensitivity enhancement (by 243% for the range of oxygen concentration 0-10% and 235% for the range of oxygen concentration 0-100%) when compared to the pure PdOEP-PMMA microfiber mat. Additionally, the as-prepared sensing films were experimentally confirmed to be highly photostable and reproducible. The advantages of AgNW-induced sensitivity enhancement could be useful for the rational design and realization of revolutionary highly sensitive sensors and expected to be readily applicable to many other high-performance gas sensor devices.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6641934PMC
http://dx.doi.org/10.1021/acsomega.8b00115DOI Listing

Publication Analysis

Top Keywords

sensitivity enhancement
20
microfiber mats
16
optical oxygen
12
oxygen sensors
12
enhancement optical
8
sensors based
8
based agnws-palladium
8
agnws-palladium octaethylporphine-polymethyl
8
octaethylporphine-polymethyl methacrylate
8
mats prepared
8

Similar Publications

Efficiency of Bacteriophage-Based Detection Methods for Non-Typhoidal in Foods: A Systematic Review.

Viruses

November 2024

Centre for Epidemiology and Planetary Health, School of Veterinary Medicine, Scotland's Rural College, Inverness IV2 5NA, UK.

Food contamination with non-typhoidal (NTS) presents a significant public health risk, underscoring the critical need for rigorous food safety measures throughout the production, distribution, preparation, and consumption stages. Conventional diagnostic strategies are time-consuming and labor-intensive and are thus sub-optimal for throughput NTS detection. Bacteriophages (phages) are highly specialized bacterial viruses and exhibit extreme specificity for their hosts.

View Article and Find Full Text PDF

Background/objectives: Congenital rubella syndrome (CRS) is a constellation of serious multi-organ birth defects following rubella virus infection during early pregnancy. Countries in which rubella vaccination has not yet been introduced can have a high burden of this disease. Data on CRS burden and epidemiology are needed to guide the introduction of a rubella vaccine and monitor progress for rubella elimination, but the multi-system nature of CRS manifestations and required specialized testing creates a challenge for conducting CRS surveillance in developing settings such as Sudan.

View Article and Find Full Text PDF

This study presents a comprehensive method for detecting debonding defects in concrete-filled steel tube (CFST) structures using wave propagation analysis with externally attached piezoelectric ceramic sensors. Experimental tests and numerical simulations were conducted to evaluate the sensitivity and accuracy of two measurement techniques-the flat and oblique measurement methods-in detecting debonding defects of varying lengths and heights. The results demonstrate that the flat measurement method excels in detecting debonding height, while the oblique method is more effective for detecting debonding length.

View Article and Find Full Text PDF

Cutaneous leishmaniasis is a parasitic disease that poses significant diagnostic challenges due to the variability of results and reliance on operator expertise. This study addresses the development of a system based on machine learning algorithms to detect spp. parasite in direct smear microscopy images, contributing to the diagnosis of cutaneous leishmaniasis.

View Article and Find Full Text PDF

Optimized Synthetic Correlated Diffusion Imaging for Improving Breast Cancer Tumor Delineation.

Sensors (Basel)

December 2024

Department of Systems Design Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada.

Breast cancer is a significant cause of death from cancer in women globally, highlighting the need for improved diagnostic imaging to enhance patient outcomes. Accurate tumor identification is essential for diagnosis, treatment, and monitoring, emphasizing the importance of advanced imaging technologies that provide detailed views of tumor characteristics and disease. Recently, a new imaging modality named synthetic correlated diffusion imaging (CDI) has been showing promise for enhanced prostate cancer delineation when compared to existing MRI imaging modalities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!