Here, a systematic study of the roles played by Pd seeds during seed-mediated coreduction of Pd-Pt is presented. Either nanoparticles with porous, hollow architectures or concave nanocubes were achieved, depending on whether the synthesis conditions favored galvanic replacement or overgrowth. Prior works have shown that the galvanic replacement reaction between seeds and a precursor can be suppressed by introducing a faster, parallel reaction that removes one of the reagents (e.g., adatom generation in solution rather than surface-catalyzed precursor reduction). Here, we show that the galvanic replacement reaction depends on the size and concentration of the Pd seeds; the former of which can be manipulated during the course of the reaction through the use of a secondary reducing agent. This insight will guide future syntheses of multimetallic nanostructures by seeded methods, allowing for a range of nanocrystals to be precisely engineered for a variety of applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6641295PMC
http://dx.doi.org/10.1021/acsomega.8b00394DOI Listing

Publication Analysis

Top Keywords

galvanic replacement
16
replacement reaction
8
overgrowth versus
4
galvanic
4
versus galvanic
4
replacement
4
replacement mechanistic
4
mechanistic roles
4
seeds
4
roles seeds
4

Similar Publications

Fabrication of Pb-Containing PtAu Nanoflowers via Galvanic Replacement Method for Electrocatalytical Oxidation of Methanol.

Molecules

November 2024

Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China.

A Pb-containing PtAu nanoflower electrocatalyst was deposited on the cathode via galvanic replacement reaction in a double-cabin galvanic cell (DCGC) with a Cu plate as the anode, a multiwalled carbon nanotube (MWCNT) modified glassy carbon electrode (GCE) as the cathode, 0.1 M HClO aqueous solution as the anolyte, and Pb-containing Pt salt and Au salt mixed aqueous solution as the catholyte, respectively, and the electrocatalytic performance of the modified electrode toward methanol oxidation in the alkaline medium was investigated. Electrochemical studies reveal that the stripping of bulk Cu can induce underpotential deposition (UPD) of Pb on Pt during the galvanic replacement reaction, which affects the morphology and composition of Pb-containing PtAu nanoparticles.

View Article and Find Full Text PDF

Dual relaxation behaviors driven by a homogeneous and stable dual-interface charge layer based on an EGaIn absorber.

Mater Horiz

December 2024

MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China.

Interface engineering, by modulating defect distribution and impedance at interfaces and inducing interfacial polarization, has proven to be an effective strategy for optimizing dielectric properties. However, the inherent incompatibility between heterogeneous phases presents a significant challenge in constructing multi-heterointerfaces and understanding how their distribution influences dielectric performance. Herein, we constructed an EGaIn@Ni/NiO/GaO composite structure by employing a low-intensity ultrasound-assisted galvanic replacement reaction followed by high-temperature annealing.

View Article and Find Full Text PDF

Hollow Pt-Encrusted RuCu Nanocages Optimizing OH Adsorption for Efficient Hydrogen Oxidation Electrocatalysis.

Angew Chem Int Ed Engl

November 2024

State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.

As one of the best candidates for hydrogen oxidation reaction (HOR), ruthenium (Ru) has attracted significant attention for anion exchange membrane fuel cells (AEMFCs), although it suffers from sluggish kinetics under alkaline conditions due to its strong hydroxide affinity. In this work, we develop ternary hollow nanocages with Pt epitaxy on RuCu (Pt-RuCu NCs) as efficient HOR catalysts for application in AEMFCs. Experimental characterizations and theoretical calculations confirm that the synergy in optimized Pt-RuCu NCs significantly modifies the electronic structure and coordination environment of Ru, thereby balancing the binding strengths of H* and OH* species, which leads to a markedly enhanced HOR performance.

View Article and Find Full Text PDF

Dynamically Reconstructed Fe-CoOOH Semi-Crystalline Electrocatalyst for Efficient Oxygen Evolution Reaction.

Small

November 2024

Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515063, P. R. China.

Article Synopsis
  • Researchers developed a new and highly efficient electrocatalyst, Fe-CoOOH, for the oxygen evolution reaction (OER) during water electrolysis using a special synthesis method involving cobalt foam.
  • The Fe-CoOOH catalyst shows impressive performance with low overpotentials and maintains stability for over 700 hours at high current densities.
  • The study highlights the significant role of iron doping in enhancing the catalyst's activity and stability by improving surface reconstruction and reaction efficiency.
View Article and Find Full Text PDF
Article Synopsis
  • - The human body has two main types of sweat glands: apocrine and eccrine, with eccrine glands playing a key role in thermoregulation and grip enhancement, controlled by the autonomic nervous system.
  • - Sudoscan technology measures electrochemical skin conductance (ESC) to diagnose small fiber neuropathy non-invasively, showing comparable effectiveness to more invasive testing methods while offering better accessibility and reliability.
  • - Unlike traditional skin conductance measures, Sudoscan focuses specifically on sudomotor function, and its integration into consumer health devices indicates its potential uses outside clinical settings, paving the way for future medical research.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!