Dopant-Modulated Conjugated Polymer Enrichment of Semiconducting SWCNTs.

ACS Omega

Security and Disruptive Technologies Portfolio, National Research Council Canada, 1200 Montreal Road, Ottawa, Ontario K1A 0R6, Canada.

Published: March 2018

Conjugated polymer extraction (CPE) is a low-cost, scalable process that can enrich single-walled carbon nanotube (SWCNT) materials in organic media. For other separation methods in aqueous phases, redox chemistry and/or pH control dramatically affect the sorting process of the SWCNTs. We have previously determined that the CPE process can be fine-tuned by adjusting the pH on the tube surface. Here, we systematically studied the effect of redox chemistry on the CPE process by adding organic p-/n-dopants. At a very strong p-/n-doping level, static repulsions dominated the interactions between the tubes and the CPE lost selectivity. When the doping level changed from a medium p-doping to a neutral state, the yield of CPE increased and the selectivity was compromised. We also observed chiral selectivity when a weak p-dopant was used. A photoluminescence excitation mapping under different titration conditions provided more insight into the doping level of the tubes relative to their diameters, chiralities, and redox potentials. We proposed a mechanism for the CPE process. The semiconducting and metallic tubes are separated because of their different solubilities, which are determined by the bundling energy between the tubes and are related to their doping level in polymer solutions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6641520PMC
http://dx.doi.org/10.1021/acsomega.8b00383DOI Listing

Publication Analysis

Top Keywords

cpe process
12
doping level
12
conjugated polymer
8
redox chemistry
8
cpe
6
process
5
dopant-modulated conjugated
4
polymer enrichment
4
enrichment semiconducting
4
semiconducting swcnts
4

Similar Publications

In this Letter, we propose and experimentally validate a high-fidelity and adaptive forward-phase-based vibration sensing using a Wiener filter (WF). In commercial coherent digital subcarrier multiplexing (DSCM) systems under external cavity lasers (ECLs), frequency-domain pilot tones (FPTs) in subcarrier intervals are employed for dynamic frequency offset estimation (FOE), carrier phase estimation (CPE), and polarization demultiplexing. The phase estimated by the CPE module is processed with the WF to achieve high-fidelity extraction of the vibration-induced phase.

View Article and Find Full Text PDF

Dual functionalization of carboxymethyl cellulose and alginate via Passerini three-component reaction to graft two hydrophobic moieties: Toward modular thin films.

Carbohydr Polym

March 2025

Université Claude Bernard Lyon 1, INSA Lyon, Université Jean Monnet, CNRS UMR 5223, Ingénierie des Matériaux Polymères, F-69621 Cédex, France. Electronic address:

Passerini reaction was advantageously exploited to hydrophobize carboxymethyl cellulose (CMC) and alginates (ALG) by employing various hydrophobic aldehydes and isocyanides. The Passerini reaction, carried out in ecofriendly conditions, allowed to design never described twofold hydrophobized polysaccharide derivatives via the covalent grafting of two hydrophobic moieties. The modified CMC and ALG products were in-depth characterized to guaranty the success of the modification and to calculate the degrees of substitution (DS).

View Article and Find Full Text PDF

The antimalarial hydroxychloroquine (HCQ) has considered for the treatment of systemic lupus erythematosus. Moreover, HCQ has been used as a drug to treat Coronavirus disease (COVID-19). In this work, nitrogen doped porous reduced graphene oxide (NprGO) has been prepared via environmentally friendly process using Fummaria Parviflora extract.

View Article and Find Full Text PDF

LiCoPO and LiNiPO phosphate pigments have colorations very close to the primary colors of the subtractive system: magenta and yellow, respectively. These two pigments are therefore of great interest in a variety of applications, including e-reader devices. However, the need to reduce their crystallite size in order to formulate stable electrophoretic inks has revealed that aggressive milling results in significant color changes, particularly for cobalt-based pigments.

View Article and Find Full Text PDF

Extrusion-based 3D printing is a widely utilized tool in tissue engineering, offering precise 3D control of bioinks to construct organ-sized biomaterial objects with hierarchically organized cellularized scaffolds. Topological properties in flowing polymers are determined by macromolecule conformation, namely orientation and stretch degree. We utilized the micro-macro approach to describe hydrogel macromolecule orientation during extrusion, offering a two-scale fluid behavior description.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!