For a given size of one fullerene molecule, there could exist many different isomers and their energy landscape is remarkably complex. To have a better understanding of the nature and origin of their isomeric stability, as a continuation of our previous endeavors, we systematically dissect the molecular stability of four fullerene systems, C, C, C, and C, with a total of 2547 structures, using density functional theory and the information-theoretic approach. The total energy decomposition analysis is beneficial to understand the origin and nature of isomeric stability. Our results showcase that the electrostatic potential is the dominant factor contributing to the isomeric stability of these fullerenes, and other contributions such as steric and quantum effects play minor but indispensable roles. This study also finds that the origin of the isomeric stability of these species is due to the spatial delocalization of the electron density. Our work should provide novel insights into the isomeric stability of fullerene molecules, which have found tremendous applications in solar-energy studies and nanomaterial sciences.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6643390 | PMC |
http://dx.doi.org/10.1021/acsomega.8b02702 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Huaqiao University College of Materials Science and Engineering, No.668 Jimei Avenue, Xiamen, Fujian, 361021, Xiamen, CHINA.
The advancement of tin-based perovskite solar cells (TPSCs) has been severely hindered by the poor controllability of perovskite crystal growth and the energy level mismatch between the perovskite and fullerene-based electron transport layer (ETL). Here, we synthesized three cis-configured pyridyl-substituted fulleropyrrolidines (PPF), specifically 2-pyridyl (PPF2), 3-pyridyl (PPF3), and 4-pyridyl (PPF4), and utilized them as precursor additives to regulate the crystallization kinetics during film formation. The spatial distance between the two pyridine groups in PPF2, PPF3, and PPF4 increases sequentially, enabling PPF4 to interact with more perovskite colloidal particles.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
City University of Hong Kong, Department of Physics and Materials Science, 83 Tat Chee Ave, Kowloon Tong, 999077, Hong Kong, HONG KONG.
Redox-active covalent organic frameworks (COFs) have been demonstrated as promising organic electrodes in many electrochemical devices. However, their inherently low conductivity significantly hinders the full utilization of their internal redox-active sites. To address this issue, a simple solvothermal method is used to in situ polymerize 2,4,6-triformylphloroglucinol (TP) and p-phenylenediamine (PA) on the surface of carbon nanotubes (CNTs), generating a nanocable-like COF-based nanocomposite, TpPa-COF@CNT nanocables, which contain abundant β-ketoenamine groups.
View Article and Find Full Text PDFMethods Protoc
December 2024
Univ Brest, CEMCA, CNRS, UMR 6521, 29238 Brest, France.
Cyclic peptides have higher stability and better properties as therapeutic agents than their linear peptide analogues. Consequently, intramolecular click chemistry is becoming an increasingly popular method for the synthesis of cyclic peptides from their isomeric linear peptides. However, assessing the purity of these cyclic peptides by mass spectrometry is a significant challenge, as the linear and cyclic peptides have identical masses.
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
Laboratório Associado para a Química Verde (LAQV), Rede de Química e Tecnologia (REQUIMTE), Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal.
The photoswitching of supramolecular host-guest complexes is the basis of numerous molecularly controlled macroscopic functions, such as sol-gel transition, photopharmacology, the active transport of ions or molecules, light-powered molecular machines, and much more. The most commonly used systems employ photoactive azobenzene guests and synthetic host molecules, which bind as the stable isomers and dissociate as the forms after exposure to UV light. We present a new, extraordinarily efficient cucurbit[7]uril (CB7)/diazocine host/guest complex with inverted stability that self-assembles under UV irradiation and dissociates in the dark.
View Article and Find Full Text PDFJ Appl Glycosci (1999)
November 2024
1 Matsutani Chemical Industry Co., Ltd.
D-Allulose 3-epimerase catalyzes C-3 epimerization between D-fructose and D-allulose was found in strain M30. The enzyme gene was cloned, and its recombinant enzyme and the mutant variants were expressed in Using the information of the sequence and model structure, we succeed in the improvement of melting temperature for the enzyme without significant loss of the enzyme activity by protein engineering method. The melting temperatures were increased by 2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!