We present a nonlinear transfer matrix method for studying the second-harmonic generation (SHG) in nonperiodic metamaterial photonic superlattices. A large enhancement of up to 5 orders of magnitude in SHG efficiency was observed for superlattices made with a Cantor-like quasiperiodic assembly of a nonlinear material and a metamaterial. The enhancement was found to depend much more on the electric field amplitude along the structure because of self-similarity effects than on the amount of nonlinear material, which opens the way to design superlattices for tailored applications in broad-band tunable lasers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6643366PMC
http://dx.doi.org/10.1021/acsomega.8b02837DOI Listing

Publication Analysis

Top Keywords

second-harmonic generation
8
metamaterial photonic
8
photonic superlattices
8
nonlinear material
8
giant second-harmonic
4
generation cantor-like
4
cantor-like metamaterial
4
superlattices
4
superlattices nonlinear
4
nonlinear transfer
4

Similar Publications

Aortic valve leaflet assessment to inform novel bioinspired materials: Understanding the impact of collagen fibres on the tissue's mechanical behaviour.

J Mech Behav Biomed Mater

December 2024

Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, 2, Dublin, Ireland; Discipline of Mechanical, Manufacturing, and Biomedical Engineering, School of Engineering, Trinity College Dublin, 2, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), Trinity College Dublin, Ireland. Electronic address:

Aortic stenosis is a prevalent disease that is treated with either mechanical or bioprosthetic valve replacement devices. However, these implants can experience problems with either functionality in the case of mechanical valves or long-term durability in the case of bioprosthetic valves. To enhance next generation prosthetic valves, such as biomimetic polymeric valves, an improved understanding of the native aortic valve leaflet structure and mechanical response is required to provide much needed benchmarks for future device development.

View Article and Find Full Text PDF

This study delves into the feasibility of leveraging quasi-static component (QSC) generation during primary Lamb wave propagation to discern subtle alterations in the interfacial properties of a two-layered plate. Unlike the second-harmonic generation of Lamb waves, QSC generation doesn't necessitate precise phase-velocity matching but rather requires an approximate matching of group velocities to ensure the emergence of cumulative growth effects. This unique characteristic empowers the QSC-based nonlinear ultrasonic method to effectively surmount the limitations associated with inherent dispersion and multimode traits of Lamb wave propagation.

View Article and Find Full Text PDF

Combining Deep-UV second harmonic generation spectroscopy with molecular simulations, we confirm and quantify the specific adsorption of guanidinium cations to the air-water interface. Using a Langmuir analysis of measurements at multiple concentrations, we extract the Gibbs free energy of adsorption, finding it larger than typical thermal energies. Molecular simulations clarify the role of polarizability in tuning the thermodynamics of adsorption, and establish the preferential parallel alignment of guanidinium at the air-water interface.

View Article and Find Full Text PDF

Nonlinear Optics in Two-Dimensional Magnetic Materials: Advancements and Opportunities.

Nanomaterials (Basel)

January 2025

Institute of Information Photonics Technology, School of Physics and Optoelectronics, Faculty of Science, Beijing University of Technology, Beijing 100124, China.

Nonlinear optics, a critical branch of modern optics, presents unique potential in the study of two-dimensional (2D) magnetic materials. These materials, characterized by their ultra-thin geometry, long-range magnetic order, and diverse electronic properties, serve as an exceptional platform for exploring nonlinear optical effects. Under strong light fields, 2D magnetic materials exhibit significant nonlinear optical responses, enabling advancements in novel optoelectronic devices.

View Article and Find Full Text PDF

The recent discovery of ferroelectric nematic liquid crystalline phases marks a major breakthrough in soft matter research. An intermediate phase, often observed between the nonpolar and the ferroelectric nematic phase, shows a distinct antiferroelectric response to electric fields. However, its structure and formation mechanisms remain debated, with flexoelectric and electrostatics effects proposed as competing mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!