Highly Efficient and Practical N-Heterocyclic Carbene Organocatalyzed Chemoselective N/C-Functionalization of Isatins with Green Chemistry Principles.

ACS Omega

Gachon Institute of Pharmaceutical Science & Department of Pharmacy, College of Pharmacy, Gachon University, 191 Hambakmoeiro, Yeonsu-gu, Incheon 21936, Republic of Korea.

Published: December 2018

Ecofriendly N-heterocyclic carbene (NHC) organocatalysis can control the N-functionalization (aza-Michael addition) and C-functionalization (Morita-Baylis-Hillman reaction, MBH) of isatins in the absence of (1) a protecting group, (2) a stoichiometric reagent, and (3) heat energy. The challengeable N-functionalization of N-unsubstituted isatins into N-substituted (NS) isatins was realized through 10 mol % NHC and 10 mol % 1,8-diazabicyclo[5.4.0]undec-7-ene catalysts within 10 min with up to 98% isolation yield. The subsequent MBH adducts of as-synthesized NS-isatins (N/C-functionalization) was perfectly acquired in 10 mol % NHC and 10 mol % 1,4-diazabicyclo[2.2.2]octane catalysis within 30 min with superiority to C/N-functionalization (MBH/aza-Michael). For guiding the application to a versatile druggable isatin library, the NHC catalysis was compared with reported functionalization of isatins in view of green chemistry principles including solvent scoring of ACS GCI pharmaceutical roundtable, E-factor, atom economy, and so on.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6643579PMC
http://dx.doi.org/10.1021/acsomega.8b02361DOI Listing

Publication Analysis

Top Keywords

n-heterocyclic carbene
8
green chemistry
8
chemistry principles
8
mol nhc
8
nhc mol
8
isatins
5
highly efficient
4
efficient practical
4
practical n-heterocyclic
4
carbene organocatalyzed
4

Similar Publications

Article Synopsis
  • New quinizarin-Au(I)-NHC complexes were developed and fully characterized, demonstrating effective growth inhibition in HeLa cervical cancer cells with IC values between 2.4 and 5.3 μM.
  • Cytotoxicity studies showed that complex 2 b could overcome anthracycline resistance in K562 leukemia cells and worked synergistically with doxorubicin against both sensitive and resistant leukemia cells.
  • The study highlighted that localizing these complexes to mitochondria was crucial for their antiproliferative effects and ability to counteract drug resistance, rather than just overall cytotoxicity.
View Article and Find Full Text PDF

Chemodivergent, enantio- and regioselective couplings of alkynes, aldehydes and silanes enabled by nickel/N-heterocyclic carbene catalysis.

Sci Bull (Beijing)

December 2024

State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China. Electronic address:

Divergent synthesis of valuable molecules through common starting materials and metal catalysis represents a longstanding challenge and a significant research goal. We here describe chemodivergent, highly enantio- and regioselective nickel-catalyzed reductive and dehydrogenative coupling reactions of alkynes, aldehydes, and silanes. A single chiral Ni-based catalyst is leveraged to directly prepare three distinct enantioenriched products (silyl-protected trisubstituted chiral allylic alcohols, oxasilacyclopentenes, and silicon-stereogenic oxasilacyclopentenes) in a single chemical operation.

View Article and Find Full Text PDF

We present a bifunctional catalyst consisting of a copper(I)/N-heterocyclic carbene and an organocatalytic guanidine moiety that enables, for the first time, a copper(I)-catalyzed reduction of amides with H as the terminal reducing agent. The guanidine allows for reactivity tuning of the originally weakly nucleophilic copper(I) hydrides - formed in situ - to be able to react with difficult-to-reduce amides. Additionally, the guanidine moiety is key for the selective recognition of "privileged" amides based on simple and readily available heterocycles in the presence of other amides within one molecule, giving rise to hitherto unknown site-selective catalytic amide hydrogenation.

View Article and Find Full Text PDF

NHC-Au-xanthate complexes.

Chem Commun (Camb)

January 2025

Institute of Organic Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Kasprzaka 44/52, Poland.

We report the synthesis, isolation, and comprehensive characterization of N-heterocyclic carbene gold xanthate (NHC-Au-X, X - xanthate) complexes. These easily accessible complexes demonstrate significant versatility as photocatalysts, facilitating [2+2]-cycloadditions, and as π-catalysts in the intramolecular hydroxylation of allenes and hydrohydrazination of alkynes.

View Article and Find Full Text PDF

Acylation stands as a fundamental process in both biological pathways and synthetic chemical reactions, with acylated saccharides and their derivatives holding diverse applications ranging from bioactive agents to synthetic building blocks. A longstanding objective in organic synthesis has been the site-selective acylation of saccharides without extensive pre-protection of alcohol units. In this study, we demonstrate that by simply altering the chirality of N-heterocyclic carbene (NHC) organic catalysts, the site-selectivity of saccharide acylation reactions can be effectively modulated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!