Characterization of the Evolution of Crystallization Fouling in Membranes.

ACS Omega

Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, Saskatchewan S7N 5A9, Canada.

Published: December 2018

Liquid-to-air membrane energy exchangers (LAMEEs) are promising in heating, ventilating, and air-conditioning applications because they are able to use semipermeable membranes to transfer heat and moisture between air and liquid desiccant streams. However, the development of crystallization fouling in membranes may pose a great risk to the long-term performance of LAMEEs. The main aim of this paper is to characterize the evolution of crystallization fouling in membranes through the use of both noninvasive and invasive methods. Noninvasive methods are used to study the development of fouling in the LAMEE by monitoring the changes in moisture flux through the membrane and overall moisture-transfer resistance of the LAMEE. On the other hand, invasive methods are implemented to characterize fouled membranes by using optical microscopy and scanning electron microscopy (SEM) to depict the morphology of crystal deposits and energy-dispersive X-ray spectroscopy (EDX) to identify the composition of the deposits. Experiments are performed by using air to dehydrate MgCl(aq) at two operating conditions of low and high fouling rates. The results show that the moisture flux decreases and the moisture-transfer resistance increases more considerably during the test at the high fouling rate than in the test at the low fouling rate. SEM micrographs show that cake crystal deposits cover the membrane surface in the test at the high fouling rate, whereas only few crystal particles are observed on the membrane in the test at the low fouling rate. Furthermore, the crystal deposits undergo more structural changes in the tests at the high fouling rate than in the tests at the low fouling rate, possibly because of the higher moisture transfer rate through the membrane in the tests at the high fouling rate. Finally, the SEM-EDX analysis confirms that the crystal deposits primarily consist of Mg, Cl, and O elements.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6643970PMC
http://dx.doi.org/10.1021/acsomega.8b01058DOI Listing

Publication Analysis

Top Keywords

fouling rate
28
high fouling
20
crystal deposits
16
fouling
12
crystallization fouling
12
fouling membranes
12
low fouling
12
evolution crystallization
8
invasive methods
8
moisture flux
8

Similar Publications

Preparation of sulfur-doped porous carbon from polyphenylene sulfide waste for photothermal conversion materials to achieve solar-driven water evaporation.

Nanoscale

January 2025

College of Materials Science and Engineering, Hubei Provincial Engineering Research Center of Industrial Fiber Preparation and Application, Wuhan Textile University, Wuhan 430200, Hubei, China.

In recent years, solar-driven photothermal water evaporation technology for seawater desalination and wastewater treatment has developed rapidly, which is of great significance for addressing the issue of freshwater scarcity. However, due to the high costs associated with the manufacturing, maintenance, and operation of such devices, their application remains challenging in remote and resource-scarce regions. Due to its excellent light absorption capability in the near-infrared region, high hydrophilicity, and stable chemical properties, coupled with the low cost of recycling waste carbonized polyphenylene sulfide, this material is an excellent choice as a photothermal material for solar-driven water evaporation devices.

View Article and Find Full Text PDF

The effectiveness and safety of hemodialysis can be hindered by protein accumulation, mechanical instability of membranes and bacterial infection during the dialytic therapy. Herein, we show that cellulose acetate membranes modified with the low-fouling polymers (namely polyvinylpyrrolidone and polyethylene glycol), followed by the in situ reduction of different densities of silver oxide(I) nanoparticles, can effectively address these limitations. These improvements comprise the enhanced resistance to the protein fouling, improved antimicrobial capabilities against S.

View Article and Find Full Text PDF

Copper-containing industrial wastewater, characterized by strong acidity, high ionic strength, and various competing metals, presents significant challenges for Cu(II) recovery. To address these issues, an electric field-enhanced ultrafiltration process was developed, assisted with a functional polyelectrolyte with high selectivity for Cu(II). The polyelectrolyte, termed PPEI, was synthesized by grafting picolyl groups onto polyethyleneimine (PEI), enhancing its affinity for Cu(II).

View Article and Find Full Text PDF

Facile Preparation of Sulfonated Polysulfone Composite Membranes with High Hydrophilicity and Visible-Light Driving Self-Cleaning Performance.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, PR China.

The photo-Fenton reaction can efficiently degrade organic pollutants and thus is applied intensively for clearing out membrane fouling. However, the pollutant removal efficiency is greatly limited by the redox cycle rate of Fe/Fe and the rapid recombination rate of the photogenerated electrons and holes. In order to overcome these drawbacks, a sulfonated polysulfone composite membrane was designed and prepared by incorporating titanium dioxide (TiO) nanoparticles into a sulfonated polysulfone membrane and sequentially forming β-FeOOHs on the membrane surface.

View Article and Find Full Text PDF

Solar-driven interfacial evaporation is one of the most attractive approaches to addressing the global freshwater shortage. However, achieving an integrated high evaporation rate, salt harvesting, and multifunctionality in evaporator is still a crucial challenge. Here, a novel composite membrane with biomimetic micro-nanostructured superhydrophobic surface is designed via ultrafast laser etching technology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!