Liquid-to-air membrane energy exchangers (LAMEEs) are promising in heating, ventilating, and air-conditioning applications because they are able to use semipermeable membranes to transfer heat and moisture between air and liquid desiccant streams. However, the development of crystallization fouling in membranes may pose a great risk to the long-term performance of LAMEEs. The main aim of this paper is to characterize the evolution of crystallization fouling in membranes through the use of both noninvasive and invasive methods. Noninvasive methods are used to study the development of fouling in the LAMEE by monitoring the changes in moisture flux through the membrane and overall moisture-transfer resistance of the LAMEE. On the other hand, invasive methods are implemented to characterize fouled membranes by using optical microscopy and scanning electron microscopy (SEM) to depict the morphology of crystal deposits and energy-dispersive X-ray spectroscopy (EDX) to identify the composition of the deposits. Experiments are performed by using air to dehydrate MgCl(aq) at two operating conditions of low and high fouling rates. The results show that the moisture flux decreases and the moisture-transfer resistance increases more considerably during the test at the high fouling rate than in the test at the low fouling rate. SEM micrographs show that cake crystal deposits cover the membrane surface in the test at the high fouling rate, whereas only few crystal particles are observed on the membrane in the test at the low fouling rate. Furthermore, the crystal deposits undergo more structural changes in the tests at the high fouling rate than in the tests at the low fouling rate, possibly because of the higher moisture transfer rate through the membrane in the tests at the high fouling rate. Finally, the SEM-EDX analysis confirms that the crystal deposits primarily consist of Mg, Cl, and O elements.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6643970 | PMC |
http://dx.doi.org/10.1021/acsomega.8b01058 | DOI Listing |
Nanoscale
January 2025
College of Materials Science and Engineering, Hubei Provincial Engineering Research Center of Industrial Fiber Preparation and Application, Wuhan Textile University, Wuhan 430200, Hubei, China.
In recent years, solar-driven photothermal water evaporation technology for seawater desalination and wastewater treatment has developed rapidly, which is of great significance for addressing the issue of freshwater scarcity. However, due to the high costs associated with the manufacturing, maintenance, and operation of such devices, their application remains challenging in remote and resource-scarce regions. Due to its excellent light absorption capability in the near-infrared region, high hydrophilicity, and stable chemical properties, coupled with the low cost of recycling waste carbonized polyphenylene sulfide, this material is an excellent choice as a photothermal material for solar-driven water evaporation devices.
View Article and Find Full Text PDFBiomater Adv
January 2025
NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, Poznan 61-614, Poland. Electronic address:
The effectiveness and safety of hemodialysis can be hindered by protein accumulation, mechanical instability of membranes and bacterial infection during the dialytic therapy. Herein, we show that cellulose acetate membranes modified with the low-fouling polymers (namely polyvinylpyrrolidone and polyethylene glycol), followed by the in situ reduction of different densities of silver oxide(I) nanoparticles, can effectively address these limitations. These improvements comprise the enhanced resistance to the protein fouling, improved antimicrobial capabilities against S.
View Article and Find Full Text PDFWater Res
January 2025
China Electronics System Engineering No.2 Construction Co., Ltd., Wuxi 214115, PR China.
Copper-containing industrial wastewater, characterized by strong acidity, high ionic strength, and various competing metals, presents significant challenges for Cu(II) recovery. To address these issues, an electric field-enhanced ultrafiltration process was developed, assisted with a functional polyelectrolyte with high selectivity for Cu(II). The polyelectrolyte, termed PPEI, was synthesized by grafting picolyl groups onto polyethyleneimine (PEI), enhancing its affinity for Cu(II).
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, PR China.
The photo-Fenton reaction can efficiently degrade organic pollutants and thus is applied intensively for clearing out membrane fouling. However, the pollutant removal efficiency is greatly limited by the redox cycle rate of Fe/Fe and the rapid recombination rate of the photogenerated electrons and holes. In order to overcome these drawbacks, a sulfonated polysulfone composite membrane was designed and prepared by incorporating titanium dioxide (TiO) nanoparticles into a sulfonated polysulfone membrane and sequentially forming β-FeOOHs on the membrane surface.
View Article and Find Full Text PDFNanomicro Lett
January 2025
College of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, People's Republic of China.
Solar-driven interfacial evaporation is one of the most attractive approaches to addressing the global freshwater shortage. However, achieving an integrated high evaporation rate, salt harvesting, and multifunctionality in evaporator is still a crucial challenge. Here, a novel composite membrane with biomimetic micro-nanostructured superhydrophobic surface is designed via ultrafast laser etching technology.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!