Optimizing the Coverage Density of Functional Groups over SiO Nanoparticles: Toward High-Resistant and Low-Friction Hybrid Powder Coatings.

ACS Omega

Advanced Functional Materials & Nanotechnology Group and Centro de Investigación en Materiales Avanzados S. C., CIMAV-Unidad Monterrey, Av. Alianza Norte 202, Autopista Monterrey-Aeropuerto Km 10, PIIT, Apodaca C.P. 66628, Nuevo León, México.

Published: December 2018

Hybrid powder coatings (HPC) with low friction and high hardness enhance the sliding speed and allow interlocking or meshing products to slide effortlessly within each other, saving energy. In automobiles, they decrease fuel consumption and greenhouse gas emission. In the present work, a new insight of the key role played by the coverage density of triethoxyphenylsilane (TPS) grafted to SiO nanoparticles over the friction coefficient, hardness, elastic modulus, and roughness of HPC is presented for the first time. In all cases, a very low amount (0.1 wt %) of functionalized or unfunctionalized SiO nanoparticles were added to a powder-coating formulation based on polyester resin. HPC formulated with functionalized nanoparticles at a suitable coverage density (HPC-TPS3) exhibited significantly low friction coefficient (μ = 0.12), strong wear resistance (under dry sliding conditions at 1 and 5 N of load), low roughness ( = 3.5 nm), and high hardness and elastic modulus on the surface. We demonstrated that it is possible to tune the macroscopic properties by varying only the coverage density of TPS that is chemically attached to SiO nanoparticles. Also, a physicochemical explanation was disclosed, wherein a hydrophilic-hydrophobic balance between -OH and phenyl groups was proposed. In all cases, the phenyl group allows the migration of functionalized nanoparticles through the polyester matrix, enhancing the hardness and elastic modulus on the surface. Thus, the functional nanomaterial design with tunable coverage density is a powerful tool to improve the physical and superficial properties of powder coatings using low amounts of nanomaterial.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6643415PMC
http://dx.doi.org/10.1021/acsomega.8b01845DOI Listing

Publication Analysis

Top Keywords

coverage density
20
sio nanoparticles
16
powder coatings
12
hardness elastic
12
elastic modulus
12
hybrid powder
8
low friction
8
high hardness
8
friction coefficient
8
functionalized nanoparticles
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!