Effect of Molecular Structure Change on the Melt Rheological Properties of a Polyamide (Nylon 6).

ACS Omega

RIAM, Department of Materials Science and Engineering, College of Engineering, Seoul National University, Kwanakro 1, Kwanakku, Seoul 08826, Korea.

Published: December 2018

Tailoring the polymer melt rheology and the chain relaxation dynamics permits easy handling of polymer processing and enables broader range of applications. Novel strategy to control the polymer melt rheology and the chain relaxation dynamics was devised. A simple process for molecular structural change in a polyamide (nylon 6) to easily generate a long-chain branching in a controllable manner without forming a network structure led to unusually large enhancements in the relaxation dynamics. The zero shear viscosity of the polyamide has increased more than 200 folds of linear chains viscosity, whereas the molar mass change was ca. 1.6 times. Storage modulus and the loss modulus at low frequency increased more than 10 and 10 times to those of neat polyamide without forming a network structure. The rheological properties of the polymer (nylon 6) melts can be finely tailored by this simple process to cover a broad range of applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6644126PMC
http://dx.doi.org/10.1021/acsomega.8b02355DOI Listing

Publication Analysis

Top Keywords

relaxation dynamics
12
rheological properties
8
polyamide nylon
8
polymer melt
8
melt rheology
8
rheology chain
8
chain relaxation
8
range applications
8
simple process
8
forming network
8

Similar Publications

Ultrafast Charge Carrier Dynamics in Vanadium Dioxide, VO: Nonequilibrium Contributions to the Photoinduced Phase Transitions.

J Phys Chem Lett

January 2025

Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, Virginia 22904, United States.

Vanadium oxide (VO) is an exotic phase-change material with diverse applications ranging from thermochromic smart windows to thermal sensors, neuromorphic computing, and tunable metasurfaces. Nonetheless, the mechanism responsible for its metal-insulator phase transition remains a subject of vigorous debate. Here, we investigate the ultrafast dynamics of the photoinduced phase transition in VO under low perturbation conditions.

View Article and Find Full Text PDF

The stomach is responsible for physically and chemically processing the ingested meal before controlled emptying into the duodenum through the pyloric sphincter. An incompetent pylorus allows reflux from the duodenum back into the stomach, and if the amount of reflux is large enough, it could alter the low pH environment of the stomach and erode the mucosal lining of the lumen. In some cases, the regurgitated contents can also reach the esophagus leading to additional complications.

View Article and Find Full Text PDF

Understanding the ultrafast vibrational relaxation following photoexcitation of molecules in a condensed phase is essential to predict the outcome and improve the efficiency of photoinduced molecular processes. Here, the vibrational decoherence and energy relaxation of a binuclear complex, [Pt2(P2O5H2)4]4- (PtPOP), upon electronic excitation in liquid water and acetonitrile are investigated through direct adiabatic dynamics simulations. A quantum mechanics/molecular mechanics (QM/MM) scheme is used where the excited state of the complex is modeled with orbital-optimized density functional calculations while solvent molecules are described using potential energy functions.

View Article and Find Full Text PDF

The femtosecond dynamics of energy transfer from light-excited spirilloxanthin (Spx) to bacteriochlorophyll (BChl) a in the reaction centers (RCs) of purple photosynthetic bacteria Rhodospirillum rubrum was studied. According to crio-electron microscopy data, Spx is located near accessory BChl a in the B-branch of cofactors. Spx was excited by 25 fs laser pulses at 490 nm, and difference absorption spectra were recorded in the range 500-700 nm.

View Article and Find Full Text PDF

Nuclear Magnetic Resonance Study of Monoclonal Antibodies Near an Oil-Water Interface.

J Pharm Sci

January 2025

Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL, USA, 32310; Center for Interdisciplinary Magnetic Resonance, National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, USA, 32310. Electronic address:

Monoclonal antibodies (mAb) represent an important class of biologic therapeutics that can treat a variety of diseases including cancer, autoimmune disorders or respiratory conditions (e.g. COVID-19).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!