Palladium nanoparticles (NPs) have been obtained by decomposition of well-defined palladium complexes noncovalently anchored onto the surface of reduced graphene oxide. Morphological analysis by microscopy showed the presence of small palladium NPs homogeneously distributed on the support. Characterization by X-ray photoelectron spectroscopy confirmed that palladium NPs contain Pd(2+) and Pd(0) oxidation states and the presence of N-heterocyclic carbene and bromo ligands. The catalytic properties of the NPs with and without the support have been evaluated in the hydrogenation of alkynes. Supported palladium NPs showed increased activity versus the nonsupported ones and could be recycled up to 10 times without the loss of catalytic activity. The composition of the palladium NPs is different for each catalytic cycle indicating a dynamic process and the formation of different catalytic active species. On the contrary, the unsupported palladium NPs showed limited activity caused by decomposition and could not be recycled. The role of the support has been investigated. The results indicate that the support influences the stability of palladium NPs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6643925PMC
http://dx.doi.org/10.1021/acsomega.8b02193DOI Listing

Publication Analysis

Top Keywords

palladium nps
24
palladium
8
nps
8
stabilization nanoparticles
4
nanoparticles produced
4
produced hydrogenation
4
hydrogenation palladium-n-heterocyclic
4
palladium-n-heterocyclic carbene
4
carbene complexes
4
complexes surface
4

Similar Publications

Enhanced electro-catalysis for methanol oxidation reaction performance by edge defects of ordered mesoporous carbon.

J Colloid Interface Sci

December 2024

School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, PR China; Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Lanzhou 730050, PR China.

Heteroatom-doped carbon materials are widely used to improve the electrocatalytic oxidation of methanol; however, the underlying mechanisms driving this enhancement remain poorly understood. A major challenge lies in developing non-doped carbon supports with tunable intrinsic defect types tailored for metal-based catalysts. In this study, we synthesize a series of ordered mesoporous carbon (OMC) supports with adjustable edge defect densities by varying roasting temperatures and employing a zinc (Zn) evaporation strategy to systematically investigate the impact of edge defects on methanol oxidation reaction (MOR) performance.

View Article and Find Full Text PDF

Graphene-Oxide-Assisted Electroless Cu Plating on a Glass Substrate.

Langmuir

December 2024

Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita, Osaka 564-8680, Japan.

In recent years, the advancement of high-frequency communication systems, particularly 5G and future 6G technologies, has increased the need for substrates that minimize signal loss and electromagnetic interference. Glass substrates are highly desirable for these applications due to their low dielectric constant and excellent surface smoothness. However, conventional electroless Cu plating methods struggle to achieve strong adhesion between Cu and the smooth, low-polarity surface of glass, making this an important challenge to address.

View Article and Find Full Text PDF

Green preparation of reusable Pd@magnetic lignosulfonate nanocomposite for hydrogen evolution reaction in all pHs.

Int J Biol Macromol

December 2024

Research Laboratory of Real Samples Analysis, Faculty of Chemistry, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran; Electroanalytical Chemistry Research Center, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran. Electronic address:

In this study, palladium nanoparticles (Pd NPs) were successfully synthesized and supported on a cost-effective, eco-friendly magnetic lignosulfonate matrix using Hibiscus Rosasinensis L. leaf extract as a natural reducing and stabilizing agent (Pd@Fe₃O₄-lignosulfonate). The magnetic lignosulfonate prevented the aggregation of Pd NPs, enhanced the active surface area, and improved the hydrophilicity of the modified carbon paste electrode (CPE), thus boosting hydrogen production efficiency.

View Article and Find Full Text PDF

Synthesis of Palladium Nanoparticles by Electrode-Respiring Biofilms.

ACS Biomater Sci Eng

December 2024

Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States.

Electroactive microorganisms such as can couple organic electron donor oxidation to the respiration of electrode surfaces, colonizing them in the process. These microbes can also reduce soluble metal ions, such as soluble Pd, resulting in metallic nanoparticle (NP) synthesis. Such NPs are valuable catalysts for industrially relevant chemical production; however, their chemical and solid-state syntheses are often energy-intensive and result in hazardous byproducts.

View Article and Find Full Text PDF

The catalytic and plasmonic properties of bimetallic gold-palladium (Au-Pd) nanoparticles (NPs) critically depend on the distribution of the Au and Pd atoms inside the nanoparticle bulk and at the surface. Under operating conditions, the atomic distribution is highly dynamic. Analyzing gas induced redistribution kinetics at operating temperatures is therefore key in designing and understanding the behavior of Au-Pd nanoparticles for applications in thermal and light-driven catalysis, but requires advanced characterization strategies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!