Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The objective of this study, the first of its kind on these specific South African low-sulfur coals, was to capture HS and SO produced under inert and oxidizing conditions from sulfur compounds present in the coals. The capturing agents were calcium and magnesium oxides formed during the transformation of calcite and dolomite. The effectiveness of two different scrubbing solutions (0.15 M cadmium acetate and 1.1 M potassium hydroxide) for absorption of volatilized HS and SO was also investigated. The bituminous coal (coal A) contained dolomite, calcite, pyrite, and organic sulfur. Lignite (coal B) had a high organic sulfur content and contained gypsum, no or low dolomite and pyrite contents, and no calcite. A third sample (coal C) was prepared by adding 5 wt % potassium carbonate to coal A. Under oxidizing conditions and at elevated temperatures, FeS produced FeO, FeO, and SO. It transformed to FeS and released HS under inert conditions. Organic sulfur interacted with organically bound calcium and magnesium at 400 °C in an inert atmosphere to form calcium sulfate and oldhamite ((Ca,Mg)S). CaO, produced from calcite or dolomite, reacted with SO and O at 950 °C to form calcium sulfate. Treatment of lignite at 400-950 °C resulted in 96-98% evolution of sulfur as gases. Hydrogen sulfide formation increased with the increasing thermal treatment temperature under inert conditions for the three coals. Under oxidizing conditions, sulfur dioxide formation decreased with the increasing temperature when heating coals B and C. The lowest ratio (0.01) of HS to SO was achieved during thermal treatment of the blend of coal and potassium carbonate (coal C), implying that almost all of sulfur was retained in the coal C ash/char samples. In situ capturing of sulfur gases by CaO and MgO and by the added KCO in coal C to form calcium/magnesium/potassium sulfates and potassium/calcium/magnesium aluminosilicate glasses during utilization of these and similar coals could reduce the percentage of sulfur volatilized from the coals by 54-100%, thereby potentially decreasing their impact on the environment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6645234 | PMC |
http://dx.doi.org/10.1021/acsomega.8b01359 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!