Reductive Cleavage of Organic Peroxides by Iron Salts and Thiols.

ACS Omega

Department of Chemistry, University of Nebraska-Lincoln, 809 Hamilton Hall, Lincoln, Nebraska 68588-0304, United States.

Published: October 2018

Despite the low bond strength of the oxygen-oxygen bond, organic peroxides are often surprisingly resistant to cleavage by nucleophiles and reductants. As a result, achieving decomposition under mild conditions can be challenging. Herein, we explore the reactivity of a selection of peroxides toward thiolates, phenyl selenide, Fe(II) salts, and iron thiolates. Peroxides activated by conjugation, strain, or stereoelectronics are rapidly cleaved at room temperature by thiolate anions, phenylselenide, or Fe(II) salts. Under the same conditions, unhindered dialkyl peroxides are only marginally reactive; hindered peroxides, including triacetone triperoxide and diacetone diperoxide (DADP), are inert. In contrast, all but the most hindered of peroxides are rapidly (<1 min at concentrations down to ∼40 mM) cleaved by mixtures of thiols and iron salts. Our observations suggest the possible intermediacy of strongly reducing complexes that are readily regenerated in the presence of stoichiometric thiolate or hydride. In the case of DADP, an easily prepared explosive of significant societal concern, catalytic amounts of iron and thiol are capable of promoting rapid and complete disproportionation. The availability of inexpensive and readily available catalysts for the mild reductive degradation of all but the most hindered of peroxides could have significant applications for controlled remediation of explosives or unwanted radical initiators.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6644787PMC
http://dx.doi.org/10.1021/acsomega.8b01977DOI Listing

Publication Analysis

Top Keywords

organic peroxides
8
feii salts
8
hindered peroxides
8
peroxides
7
reductive cleavage
4
cleavage organic
4
peroxides iron
4
iron salts
4
salts thiols
4
thiols despite
4

Similar Publications

A smartphone-integrated colorimetric sensor is introduced for the rapid detection of phenolic compounds, including 8-hydroquinone (HQ), p-nitrophenol (NP), and catechol (CC). This sensor relies on the peroxidase-mimicking activity of aspartate-based metal-organic frameworks (MOFs) such as Cu-Asp, Ce-Asp, and Cu/Ce-Asp. These MOFs facilitate the oxidation of a colorless substrate, 3,3',5,5'-tetramethylbenzidine (TMB), by reactive oxygen species (ROS) derived from hydrogen peroxide (HO), resulting in the formation of blue-colored oxidized TMB (ox-TMB).

View Article and Find Full Text PDF

Advanced oxidation technology plays an important role in wastewater treatment due to active substances with high redox potential. Biochar is a versatile and functional biomass material. It can be used for resource management of various waste biomasses.

View Article and Find Full Text PDF

Imine-based covalent organic frameworks (COFs) have been widely applied in photocatalytic hydrogen peroxide (HO) production because of their highly crystalline properties and tunable chemical structures. However, the inherent polarization of C═N linkage brings a high energy barrier for π-electron delocalization, impeding the in-plane photoelectron transfer process, which leads to an inadequate efficiency of HO photosynthesis. In addition, the chemical stability of most imine-COFs remains insufficient due to the reversible nature of imine linkage.

View Article and Find Full Text PDF

Recently, there has been immense interest in using biodegradable polymers to replace petro-derived polymers. Poly(3-hydroxybutyrate--3-hydroxyvalerate) (PHBV), which is gaining popularity due to its biodegradability, is used in developing blends and composites for a variety of applications. To enhance the miscibility between different components of a material with PHBV, functionalization of the PHBV chain can be done.

View Article and Find Full Text PDF

An in situ reactive zone approach using calcium peroxide for the remediation of benzene and chlorobenzene in groundwater: A field study.

J Environ Manage

December 2024

State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 211135, China; University of Chinese Academy of Sciences, Beijing, 100049, China. Electronic address:

There is a gap in understanding the different contributions of biodegradation and free radical oxidation using calcium peroxide (CaO) for the remediation of mixed contaminants of benzene and chlorobenzene in groundwater. In this study, the remedial efficiency and mechanisms of benzene and chlorobenzene co-contaminants using CaO were explored by an integrated approach of field study and laboratory validation. It was found that in the field demonstration program, the radius of influence for each injection point using Geoprobe direct-push was larger than the designed value of 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!