A series of 3,5-disubstituted 1,4-dihydropyridine derivatives including the derivative with two chiral centers, (R = CH, CHPh), as a new type of organic hydride source were synthesized and characterized. The thermodynamic driving forces (defined as enthalpy changes or standard redox potentials) of the 6 elementary steps for the organic hydrides to release hydride ions in acetonitrile were measured by isothermal titration calorimetry and electrochemical methods. The impacts of the substituents and functional groups bearing the N1 and C3/C5 positions on the thermodynamic driving forces of the 6 elementary steps were examined and analyzed. Moreover, the results showed that the reaction mechanism between the chiral organic hydride and activated ketone (ethyl benzoylformate) was identified as the concerted hydride transfer pathway based on the thermodynamic analysis platform. These valuable and crucial thermodynamic parameters will provide a broadly beneficial impact on the applications of 3,5-disubstituted 1,4-dihydropyridine derivatives in organic synthesis and pharmaceutical chemistry.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6645033 | PMC |
http://dx.doi.org/10.1021/acsomega.8b01815 | DOI Listing |
Nat Commun
January 2025
Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Aichi, Japan.
DNA-nanoparticle motor is a burnt-bridge Brownian ratchet moving on RNA-modified surface driven by Ribonuclease H (RNase H), and one of the fastest nanoscale artificial motors. However, its speed is still much lower than those of motor proteins. Here we resolve elementary processes of motion and reveal long pauses caused by slow RNase H binding are the bottleneck.
View Article and Find Full Text PDFAcc Chem Res
January 2025
Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.
ConspectusReactions of gas phase molecules with surfaces play key roles in atmospheric and environmental chemistry. Reactive uptake coefficients (γ), the fraction of gas-surface collisions that yield a reaction, are used to quantify the kinetics in these heterogeneous and multiphase systems. Unlike rate coefficients for homogeneous gas- or liquid-phase reactions, uptake coefficients are system- and observation-dependent quantities that depend upon a multitude of underlying elementary steps.
View Article and Find Full Text PDFPrev Sci
January 2025
Department of Psychology, Virginia Commonwealth University, 806 West Franklin Street, PO Box 842018, Richmond, VA, 23284-2018, USA.
It is difficult for consumers to access the evidence base for prevention programs to determine which models or practices have the strongest empirical support for improving youth social, emotional, and behavioral (SEB) outcomes within their specific service contexts. Researchers can address this evidence-to-practice gap through innovations in research synthesis. The Distillation and Matching Model (Chorpita et al.
View Article and Find Full Text PDFChem Sci
December 2024
State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
The altered solvation structures and dynamical properties of water molecules at the metal/water interfaces will affect the elementary step of an electrochemical process. Simulating the interfacial structure and dynamics with a realistic representation will provide us with a solid foundation to make a connection with experimental studies. To surmount the accuracy-efficiency tradeoff and provide dynamical insights, we use state-of-the-art machine learning molecular dynamics (MLMD) to study the water exchange dynamics, which are fundamental to adsorption/desorption and electrochemical reaction steps.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Zhang Jiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China.
Class II photolyases (PLs) are a distant subclade in the photolyase/cryptochrome superfamily, displaying a unique Trp-Tyr tetrad for photoreduction and exhibiting a lower quantum yield (QY) of DNA repair (49%) than class I photolyases (82%) [M. Zhang, L. Wang, S.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!