Gallium nitrate is biologically active in blocking bone resorption in vitro as well as in vivo. Administration of gallium nitrate to growing rats results in a dose-dependent accumulation of low levels of gallium in bone that is associated with specific changes in the mineral properties of bone. To elucidate in greater detail the changes induced by gallium, the properties of whole and density-fractionated bone samples from control and gallium-treated rats were examined. These studies showed that short-term treatment with gallium nitrate caused an increase in bone calcium and phosphate content. Devitalized bone powder from the gallium-treated rats was less soluble in acetate buffer and less readily resorbed by monocytes. Density fractionation analyses demonstrated that the largest proportion (76% by weight) of powdered metaphyseal bone particles from rats had a density of less than 2.15 g/cc. Following short-term treatment (14 days) with gallium nitrate (45 mg/kg body weight), a significant increase in the relative proportion of more dense bone (greater than or equal to 2.15 g/cc) was observed (24% for the control vs. 39% for the gallium-treated rats, P less than 0.01). In the diaphyseal samples, the largest proportion (88% by weight) of the bone powder had a density of greater than or equal to 2.15 g/cc. After short-term treatment with gallium, a slight decrease in mean diaphyseal particle density was observed. Measurement of calcium accretion with 45Ca in the gallium-treated rats demonstrated increased specific activity in the metaphyseal bone samples, densities = 2.0, 2.1, 2.15, and 2.25 g/cc; the difference was significant only for the 2.25 g/cc fraction.(ABSTRACT TRUNCATED AT 250 WORDS)

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF02556640DOI Listing

Publication Analysis

Top Keywords

gallium nitrate
16
gallium-treated rats
16
short-term treatment
12
215 g/cc
12
bone
10
gallium
8
gallium bone
8
mineral properties
8
bone samples
8
treatment gallium
8

Similar Publications

Metals have been used throughout history to manage disease. With the rising incidence of antibiotic-resistant bacterial strains, metal-based antimicrobials (MBAs) have re-emerged as an alternative to combat infections. Gallium nitrate has shown promising efficacy against several pathogens.

View Article and Find Full Text PDF

The emergence of multidrug-resistant isolates is a growing concern for public health, necessitating new therapeutic strategies. Gallium nitrate [Ga(NO)], a medication for cancer-related hypercalcemia, has attracted great attention due to its ability to inhibit growth and biofilm formation by disrupting iron metabolism. However, the antibacterial efficacy of Ga(NO) is not always satisfactory.

View Article and Find Full Text PDF

Gallium Uncouples Iron Metabolism to Enhance Glioblastoma Radiosensitivity.

Int J Mol Sci

September 2024

Department of Radiation Oncology, Division of Free Radical and Radiation Biology, The University of Iowa, Iowa City, IA 52242, USA.

Article Synopsis
  • Gallium therapy is being looked at again as a way to treat glioblastoma, a type of brain tumor.
  • It works by acting like iron in the body, messing with important enzymes related to iron, which can cause problems for the tumor cells.
  • New findings show that gallium can reduce iron in the mitochondria (energy factories in cells), harm DNA, and make some tumor cells more sensitive to radiation therapy, possibly helping to fight the cancer better.
View Article and Find Full Text PDF

The effect of 60Co gamma irradiation on gallium oxide and titanium oxide (Ga2O3-TiO2) nanocomposites are investigated in the present study. The Ga2O3-TiO2 nanocomposite was synthesized by hydrothermal method at 120°C. The precursors for the synthesis consist of gallium nitrate anhydrous and titanium trichloride along with sodium hydroxide to achieve the pH of 9.

View Article and Find Full Text PDF

The development of innovative heterostructures made of ZnO nanowires is of great interest for enhancing the performances of many devices in the fields of optoelectronics, photovoltaics, and energy harvesting. We report an original fabrication process to form ZnO/ZnGaO core-shell nanowire heterostructures in the framework of the wet chemistry techniques. The process involves the partial chemical conversion of ZnO nanowires grown via chemical bath deposition into ZnO/ZnGaO core-shell nanowire heterostructures with a high interface quality following their immersion in an aqueous solution containing gallium nitrate heated at a low temperature.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!