One-dimensional photonic crystals or multilayer films produce colors that change depending on viewing and light illumination angles because of the periodic refractive index variation in alternating layers that satisfy Bragg's law. Recently, we have developed multilayered photonic hydrogels of two distinct bulk geometries that possess an alternating structure of a rigid polymeric lamellar bilayer and a ductile polyacrylamide (PAAm) matrix. In this paper, we focus on fabrication of composite gels with variable photonic band gaps by controlling the PAAm layer thickness. We report programmable angle-dependent and angle-independent structural colors produced by composite hydrogels, which is achieved by varying bulk and internal geometries. In the sheet geometry, where the lamellae are aligned parallel to the sheet surface, the photonic gel sheet exhibits strong angle-dependent colors. On the other hand, when lamellae are coaxially aligned in a cylindrical geometry, the gel rod exhibits an angle-independent color, in sharp contrast with the gel sheet. Rocking curves have been constructed to justify the diverse angle-dependent behavior of various geometries. Despite varying the bulk geometry, the tunable photonic gels exhibit strong mechanical performances and toughness. The distinct angle dependence of these tough photonic materials with variable band gaps could benefit light modulation in displays and sensor technologies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6641405 | PMC |
http://dx.doi.org/10.1021/acsomega.7b01443 | DOI Listing |
Small Methods
December 2024
Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, 695019, India.
To counter economic terrorism by preventing counterfeit currency, documents and high-value commercial products, new-generation security inks with multiple safety features are required. Herein, color-tunable pyrylium and pyridinium dye-encapsulated polymethyl methacrylate (PMMA) colloidal microspheres are reported to exhibiting brilliant emission and photonic properties. A combination of the PMMA colloidal photonic ink having structural color variation and the dye-encapsulated colloidal photonic ink with fluorescence modulation is used for security labeling.
View Article and Find Full Text PDFAdv Mater
January 2025
National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China.
Physical unclonable functions (PUFs) are emerging as a cutting-edge technology for enhancing information security by providing robust security authentication and non-reproducible cryptographic keys. Incorporating renewable and biocompatible materials into PUFs ensures safety for handling, compatibility with biological systems, and reduced environmental impact. However, existing PUF platforms struggle to balance high encoding capacity, diversified encryption signatures, and versatile functionalities with sustainability and biocompatibility.
View Article and Find Full Text PDFMicrosyst Nanoeng
November 2024
National University of Defense Technology, Changsha, 410073, China.
MEMS gyroscopes are well known for their outstanding advantages in Cost Size Weight and Power (CSWaP), which have inspired great research attention in recent years. A higher signal-to-noise ratio (SNR) for MEMS gyroscopes operating at larger vibrating amplitudes provides improved measuring resolution and ARW performance. However, the increment of amplitude causes strong nonlinear effects of MEMS gyroscopes due to their micron size, which has negative influences on the performance.
View Article and Find Full Text PDFMaterials (Basel)
October 2024
Shandong Technology Centre of Nanodevices and Integration, School of Integrated Circuits, Shandong University, Jinan 250101, China.
The topological characteristics of the down-skin surfaces for as-built components by laser powder bed fusion (LPBF) are particularly representative, while the study on the improvement of the surface quality of these surfaces remains largely unexplored. Herein, the laser polishing of LPBF-built components with different inclination angles was systematically investigated with an emphasis on the down-skin surfaces. Our result shows that the topography of the top surface is independent of the inclination angle, and the surface topography of the down-skin surface is dominated by additional angle-dependent surface characteristics.
View Article and Find Full Text PDFAdv Sci (Weinh)
September 2024
Key Laboratory for UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, China.
Binocular stereo vision relies on imaging disparity between two hemispherical retinas, which is essential to acquire image information in three dimensional environment. Therefore, retinomorphic electronics with structural and functional similarities to biological eyes are always highly desired to develop stereo vision perception system. In this work, a hemispherical optoelectronic memristor array based on Ag-TiO nanoclusters/sodium alginate film is developed to realize binocular stereo vision.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!