Nickel-Catalyzed Transfer Hydrogenation of Benzonitriles with 2-Propanol and 1,4-Butanediol as the Hydrogen Source.

ACS Omega

Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico.

Published: May 2017

The homogeneous transfer hydrogenation of benzonitrile with 2-propanol or 1,4-butanediol produced -benzylidene benzylamine (BBA, 85% yield) using 5 mol % [Ni(COD)] as a catalytic precursor and a mixture of CyP(CH)PCy and CyP(CH)P(O)Cy as ancillary ligands, under mild reaction conditions (120 °C, 96 h, tetrahydrofuran). 1,4-Butanediol performed better than 2-propanol as a hydrogen donor and yielded γ-butyrolactone as the product of transfer dehydrogenation. Selectivity toward dibenzylamine (DBA, 62% yield) was achieved by varying the amount of 1,4-butanediol in the catalytic system. A reaction mechanism was proposed, involving a ligand-assisted O-H bond activation, end-on substrate coordination, and a key dihydrido-Ni(II) intermediate, leading to the in situ formation of primary imines and amines to ultimately yield the secondary imines observed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6641154PMC
http://dx.doi.org/10.1021/acsomega.7b00545DOI Listing

Publication Analysis

Top Keywords

transfer hydrogenation
8
2-propanol 14-butanediol
8
nickel-catalyzed transfer
4
hydrogenation benzonitriles
4
benzonitriles 2-propanol
4
14-butanediol
4
14-butanediol hydrogen
4
hydrogen source
4
source homogeneous
4
homogeneous transfer
4

Similar Publications

Electron transfer in polysaccharide monooxygenase catalysis.

Proc Natl Acad Sci U S A

January 2025

California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720.

Polysaccharide monooxygenase (PMO) catalysis involves the chemically difficult hydroxylation of unactivated C-H bonds in carbohydrates. The reaction requires reducing equivalents and will utilize either oxygen or hydrogen peroxide as a cosubstrate. Two key mechanistic questions are addressed here: 1) How does the enzyme regulate the timely and tightly controlled electron delivery to the mononuclear copper active site, especially when bound substrate occludes the active site? and 2) How does this electron delivery differ when utilizing oxygen or hydrogen peroxide as a cosubstrate? Using a computational approach, potential paths of electron transfer (ET) to the active site copper ion were identified in a representative AA9 family PMO from (PMO9E).

View Article and Find Full Text PDF

Saturated sp-carbon nanothreads (CNTh) have garnered significant interest due to their predicted high Young's modulus and thermal conductivity. While the incorporation of heteroatoms into the central ring has been shown to influence the formation of CNTh and yield chemically homogeneous products, the impact of pendant groups on the polymerization process remains underexplored. In this study, we investigate the pressure-induced polymerization of phenol, revealing two phase transitions occurring below 0.

View Article and Find Full Text PDF

Covalent Grafting of Graphene Quantum Dots onto Stepped TiO-Mediated Electronic Modulation for Electrocatalytic Hydrogen Evolution.

Inorg Chem

January 2025

School of Chemistry and Chemical Engineering, and Institute for Innovative Materials and Energy, Yangzhou University, 180 Si-Wang-Ting Road, Yangzhou 225002, China.

The interaction between electrocatalytic active centers and their support is essential to the electrocatalytic performance, which could regulate the electronic structure of the metal centers but requires precise design. Herein, we report on covalent grafting of graphene quantum dots (GQDs) on stepped TiO as a support to anchoring cobalt phosphide nanoparticles (CoP/GQD/S-TiO) for electrocatalytic hydrogen evolution reaction (HER). The covalent ester bonds between GQDs and TiO endow enlarged anchoring sites to achieve highly dispersed electroactive CoP nanoparticles but, more importantly, provide an efficient electron-transfer pathway from TiO to GQDs which could regulate the electronic structure of CoP.

View Article and Find Full Text PDF

Semiconductor nanomaterials and nanostructured interfaces have important technological applications, ranging from fuel production to electrosynthesis. Their photocatalytic activity is known to be highly heterogeneous, both in an ensemble of nanomaterials and within a single entity. Photoelectrochemical imaging techniques are potentially useful for high-resolution mapping of photo(electro)catalytic active sites; however, the nanoscale spatial resolution required for such experiments has not yet been attained.

View Article and Find Full Text PDF

Genetic investigation of hydrogenases in suggests that redox balance via hydrogen cycling enables high ethanol yield.

Appl Environ Microbiol

January 2025

Centro de Engenharia Genética e Biologia Molecular (CBMEG), Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil.

Unlabelled: is an anaerobic and thermophilic bacterium that has been genetically engineered for ethanol production at very high yields. However, the underlying reactions responsible for electron flow, redox equilibrium, and how they relate to ethanol production in this microbe are not fully elucidated. Therefore, we performed a series of genetic manipulations to investigate the contribution of hydrogenase genes to high ethanol yield, generating evidence for the importance of hydrogen-reacting enzymes in ethanol production.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!