The occurrence of contaminants of emerging concern (CECs) in water is an environmental issue that must be addressed to avoid damage to ecosystems and human health. Inspired by this current issue, in this work, we fabricated nanocellulose (NC) particles grafted with the block copolymer Jeffamine ED 600 (NC-Jeffamine) capable of adsorbing acetaminophen, sulfamethoxazole, and ,-diethyl--toluamide (DEET) from aqueous solution by electrostatic interactions. NC-Jeffamine composites were prepared by carboxylation of the NC surface via 2,2,6,6-tetramethyl-1-piperidinyloxy oxidation followed by the covalent attachment of Jeffamine using the -(3-dimethylaminopropyl)-'-ethylcarbodiimide/-hydroxysulfosuccinimide sodium salt reaction. The reaction was followed and confirmed by Fourier transform infrared and conductometric titration. The physical characterization was performed by thermogravimetric analysis, Brunauer-Emmett-Teller analysis, scanning electron microscopy, dynamic light scattering, and Z-potential analysis. This material was used to study the adsorption profile of three CECs in deionized water, namely, acetaminophen, sulfamethoxazole, and DEET. The adsorption isotherms were obtained at pH 3, 7, and 9, where the best adsorption results corresponded to pH 9 because of the uniform dispersion of the adsorbate in solution. A computational study based on the density functional theory determined that the possible interactions of the CECs with the adsorbent material were related to hydrogen bonds and/or van der Waals forces. The calculated binding energies were used as a descriptor to characterize the optimum adsorption site of CECs onto NC-Jeffamine.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6645408 | PMC |
http://dx.doi.org/10.1021/acsomega.7b01053 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!