Partition of Amphiphilic Molecules to Lipid Bilayers by ITC: Low-Affinity Solutes.

ACS Omega

Chemistry Department FCTUC, CQC-Biological Chemistry Group, Largo D. Dinis, Rua Larga, 3004-535 Coimbra, Portugal.

Published: October 2017

A protocol is developed to allow the accurate characterization of partition to lipid bilayers for solutes with low affinity, using isothermal titration calorimetry. The methodology proposed is suitable for studies using complex membranes, such as intact biomembranes or whole cells. In the method developed, the association is characterized at increasing solute concentrations. This allows the characterization of solute partition into unperturbed membranes, as well as effects induced by high solute concentrations. Most druglike molecules are expected to interact with low-to-moderate affinity with relevant cell membranes. This is due to both the need for a relatively high aqueous solubility of the drug and the poor binding properties of the cell membranes. The methodology is applied to characterize the interaction of antibiotic Rifampicin with 1-palmitoyl-2-oleoyl--glycero-3-phosphocholine and with lipid bilayers representative of bacterial membranes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6645030PMC
http://dx.doi.org/10.1021/acsomega.7b01145DOI Listing

Publication Analysis

Top Keywords

lipid bilayers
12
solute concentrations
8
cell membranes
8
membranes
5
partition amphiphilic
4
amphiphilic molecules
4
molecules lipid
4
bilayers itc
4
itc low-affinity
4
low-affinity solutes
4

Similar Publications

Neuronal Plasma Membranes as Supramolecular Assemblies for Biological Memory.

Langmuir

January 2025

Department of Physics and Astronomy, The University of Tennessee, Knoxville, Tennessee 37996, United States.

Biological memory is the ability to develop, retain, and retrieve information over time. Currently, it is widely accepted that memories are stored in synapses (i.e.

View Article and Find Full Text PDF

Modification of silica interfaces by covalent attachment of functional ligands is a primary means of controlling the interfacial chemistry of porous silicas used in separations, environmental cleanup, and biosensing. Recently, modification of hydrophobic, -alkyl-silane-functionalized interfaces has been achieved through self-assembly of zwitterionic phospholipids or mixed-charged surfactants to form "hybrid bilayers", producing interfaces that mimic lipid-bilayer partitioning and provide shape-selective partitioning of aromatic hydrocarbons. Charged headgroups, however, introduce electrostatic interactions that strongly influence the retention of ionizable solutes and require careful control over pH and ionic strength in the solution phase.

View Article and Find Full Text PDF

Unraveling Cholesterol-Dependent Interactions of Alkylphospholipids with Supported Lipid Bilayers.

Langmuir

January 2025

School of Chemical Engineering and Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon 16419, Republic of Korea.

Alkylphospholipids are single-chain lipid amphiphiles that possess clinically relevant biological activities driven by membrane-destabilizing interactions. Subtle variations in alkylphospholipid structure can lead to significant differences in their biological effects, yet corresponding membrane interactions remain underexplored. Herein, we employed the quartz crystal microbalance-dissipation (QCM-D) technique to characterize the real-time membrane interactions of three alkylphospholipids-edelfosine, miltefosine, and perifosine-on supported lipid bilayers with varying cholesterol fractions.

View Article and Find Full Text PDF

Neurotransmitter release is triggered in microseconds by the two C domains of the Ca sensor synaptotagmin-1 and by SNARE complexes, which form four-helix bundles that bridge the vesicle and plasma membranes. The synaptotagmin-1 CB domain binds to the SNARE complex via a 'primary interface', but the mechanism that couples Ca-sensing to membrane fusion is unknown. Widespread models postulate that the synaptotagmin-1 Ca-binding loops accelerate membrane fusion by inducing membrane curvature, perturbing lipid bilayers or helping bridge the membranes, but these models do not seem compatible with SNARE binding through the primary interface, which orients the Ca-binding loops away from the fusion site.

View Article and Find Full Text PDF

Neurexin cell-adhesion molecules regulate synapse development and function by recruiting synaptic components. Here, we uncover a mechanism for presynaptic assembly that precedes neurexin recruitment, mediated by interactions between cytosolic proteins and membrane phospholipids. Developmental imaging in C.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!