NiO Nanoparticle Synthesis Using a Triblock Copolymer: Enhanced Magnetization and High Specific Capacitance of Electrodes Prepared from the Powder.

ACS Omega

MLS Professor's Unit and Department of Materials Science, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata 700032, India.

Published: January 2017

AI Article Synopsis

Article Abstract

Nickel oxide nanoparticles of diameter ∼21 nm were prepared by a sol-gel method using the triblock copolymer poly(ethylene glycol)--(propylene glycol)--(ethylene glycol). X-ray photoelectron spectroscopy analysis showed the presence of Ni and Ni ions in the material. The electrical conductivity of this material was due to small polaron hopping between Ni and Ni sites. The magnetization shown by these nanoparticles was much higher than that reported in the literature. This is ascribed to the presence of Ni ions with uncompensated spin moments. Spin-glass behavior was exhibited by the material at 10.7 K. The electrochemical characterization of electrodes comprising of these NiO nanoparticles using cyclic voltammetric measurements showed a specific capacitance value of 810 F/g, the highest reported for this material. These materials will thus form one of the useful multifunctional systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6640950PMC
http://dx.doi.org/10.1021/acsomega.6b00384DOI Listing

Publication Analysis

Top Keywords

triblock copolymer
8
specific capacitance
8
presence ions
8
nio nanoparticle
4
nanoparticle synthesis
4
synthesis triblock
4
copolymer enhanced
4
enhanced magnetization
4
magnetization high
4
high specific
4

Similar Publications

L-Threonine-Derived Biodegradable Polyurethane Nanoparticles for Sustained Carboplatin Release.

Pharmaceutics

December 2024

Department of Polymer Science and Engineering, Pusan National University, Busan 46241, Republic of Korea.

The use of polymeric nanoparticles (NPs) in drug delivery systems offers the advantages of enhancing drug efficacy and minimizing side effects; In this study, L-threonine polyurethane (LTPU) NPs have been fabricated by water-in-oil-in-water emulsion and solvent evaporation using biodegradable and biocompatible LTPU. This polymer was pre-synthesized through the use of an amino acid-based chain extender, desaminotyrosyl L-threonine hexyl ester (DLTHE), where urethane bonds are formed by poly(lactic acid)-poly(ethylene glycol)-poly(lactic acid) (PLA-PEG-PLA) triblock copolymer and 1,6-hexamethylene diisocyanate (HDI). LTPU is designed to be degraded by hydrolysis and enzymatic activity due to the presence of ester bonds and peptide bonds within the polymer backbone.

View Article and Find Full Text PDF

Mesoporous Nitrogen-Doped Carbon Support from ZIF-8 for Pt Catalysts in Oxygen Reduction Reaction.

Nanomaterials (Basel)

January 2025

Graduate School of Energy Convergence, Institute of Integrated Technology, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea.

Zeolitic imidazolate framework-8 (ZIF-8) has been extensively studied as a precursor for nitrogen-doped carbon (NC) materials due to its high surface area, tunable porosity, and adjustable nitrogen content. However, the intrinsic microporous structure of the ZIF-8 limits mass transport and accessibility of reactants to active sites, reducing its effectiveness in electrochemical applications. In this study, a soft templating approach using a triblock copolymer was used to prepare mesoporous ZIF-8-derived NC (Meso-ZIF-NC) samples.

View Article and Find Full Text PDF

Poly(lactic acid)-based materials with enhanced gas permeability for modified atmosphere packaging of Chinese bayberry.

Int J Biol Macromol

January 2025

College of Food Science and Engineering, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot, Inner Mongolia 010010, China. Electronic address:

Biodegradable plastics are increasingly utilized in packaging, driven by green chemistry and environmental responsibility. Among them, poly(L-lactic acid) (PLLA) stands out due to its biodegradability and biocompatibility. However, its limited gas permeability and selectivity hinder its application in produce preservation.

View Article and Find Full Text PDF

Investigating the interactions between a poloxamer and TEMPO-oxidised cellulose nanocrystals.

Carbohydr Polym

March 2025

Bristol Composites Institute, School of Civil, Aerospace, and Design Engineering, University of Bristol, University Walk, Bristol BS8 1TR, UK. Electronic address:

Cellulose nanocrystals (CNCs) have emerged as promising, sustainable materials, with applications in sensors, coatings, pharmaceuticals, and composites. Their modification with block copolymers such as PEO-PPO-PEO triblock copolymers of the Pluronic family has been attempted many times in the literature, with claims that such modification would happen by an anchor(PEO)-buoy(PPO)-anchor(PEO) mechanism. However, there is much disagreement in the literature on this.

View Article and Find Full Text PDF

The versatile nature of the urease enzyme makes it a valuable asset in biological and industrial contexts. The creation of bioconjugates using enzyme-polymer combinations has extended the shelf life and stability of urease. A triblock copolymer, PAM-co-PDPA-co-PMAA@urease (ADM@urease), was synthesized using acrylamide (AM), 2,5-dioxopyrrolidin-1-ylacrylate (DPA), methacrylic acid (MAA), and urease via the RAFT-Grafting-To polymerization method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!