Preparation and Properties of Hydrogels Based on PEGylated Lignosulfonate Amine.

ACS Omega

Composite Materials and Engineering Center, Washington State University, P.O. Box 641806, Pullman, Washington 99164, United States.

Published: January 2017

Sodium lignosulfonate (SLS) was aminated to obtain a lignin amine (LA) compound, which was subsequently crosslinked with poly(ethylene glycol) diglycidyl ether (PEGDGE) to obtain hydrogels. The chemical structure of the resulting LA-derived hydrogel (LAH) was characterized by Fourier transform infrared (FTIR) spectroscopy, solid-state C NMR spectroscopy, and elemental analysis, and the interior morphology of the freeze-dried hydrogel was examined by scanning electron microscopy. NMR and FTIR spectroscopy results indicated that the amino groups of LA reacted with PEGDGE in the crosslinking reaction. The lignin content in the resulting hydrogel increased with an increase in the LA/PEGDGE weight ratio in the reaction, approaching a maximum (∼71 wt %) and leveling off. The hydrogel with such a composition happened to be the same as the one prepared by reacting the primary amines of LA and epoxy groups of PEGDGE in equal stoichiometry. These results strongly suggest that the formation of the hydrogel network structure was largely dictated by the reactions between the primary amines and epoxy groups. The gels with lignin contents at this level exhibited a superior swelling capacity, viscoelasticity, and shear properties.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6641139PMC
http://dx.doi.org/10.1021/acsomega.6b00296DOI Listing

Publication Analysis

Top Keywords

ftir spectroscopy
8
primary amines
8
amines epoxy
8
epoxy groups
8
hydrogel
5
preparation properties
4
properties hydrogels
4
hydrogels based
4
based pegylated
4
pegylated lignosulfonate
4

Similar Publications

This study focused on simulating the adsorption-based separation of Methylene Blue (MB) dye utilising Oryza sativa straw biomass (OSSB). Three distinct modelling approaches were employed: artificial neural networks (ANN), adaptive neuro-fuzzy inference systems (ANFIS), and response surface methodology (RSM). To evaluate the adsorbent's potential, assessments were conducted using Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM).

View Article and Find Full Text PDF

As global demand for fossil fuels rises amidst depleting reserves and environmental concerns, exploring sustainable and renewable energy sources has become imperative. This study investigated the pyrolysis of corncob, a widely available agricultural waste, using urea as a catalyst to enhance bio-oil production. The aim was to determine the optimum urea concentration and pyrolysis temperature for bio-oil yield from corncob.

View Article and Find Full Text PDF

Efficient and accurate determination of the degree of substitution of cellulose acetate using ATR-FTIR spectroscopy and machine learning.

Sci Rep

January 2025

Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Karlsruhe, 76344, Germany.

Multiple linear regression models were trained to predict the degree of substitution (DS) of cellulose acetate based on raw infrared (IR) spectroscopic data. A repeated k-fold cross validation ensured unbiased assessment of model accuracy. Using the DS obtained from H NMR data as reference, the machine learning model achieved a mean absolute error (MAE) of 0.

View Article and Find Full Text PDF

Stability Study of Anticoagulant Hydrogel Coatings Toward Long-Term Cardiovascular Devices.

Langmuir

January 2025

State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, P. R. China.

Implantable cardiovascular devices have revolutionized the treatment of cardiovascular diseases, yet their long-term functionality without causing thrombosis is a persistent challenge. Although the surface modification of anticoagulant coating has greatly improved the biocompatibility of the devices, its long-term stability in complex physiological environments still remains questionable. Herein, the stability of three anticoagulant hydrogel coatings, poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC), poly(sodium 2-acryloyl-2-methylpropanesulfonate) (PAMPS), and poly(4-styrenesulfonate sodium) (PSS), is studied.

View Article and Find Full Text PDF

Cellulose-based poly(ionic liquid)s: Correlations between degree of substitution and alkyl side chain length with conductive and morphological properties.

Int J Biol Macromol

January 2025

Department of Chemistry, Rutgers University, Camden, NJ, United States of America; Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, United States of America. Electronic address:

Ion transport in solid polymer electrolytes is crucial for applications like energy conversion and storage, as well as carbon dioxide capture. However, most of the materials studied in this area are petroleum-based. Natural materials (biopolymers) have the potential to act as alternatives to petroleum-based products and, when derived with ionic liquid (IL) functionalities, present a sustainable alternative for conductive materials by offering tunable morphological, thermal, and mechanical properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!