Vinyl monomers from soybean, sunflower, linseed, and olive oils were copolymerized with styrene (St), methyl methacrylate (MMA), and vinyl acetate (VAc) to determine the reactivity of biobased monomers in radical copolymerization, as well as their feasibility in emulsion processes for the synthesis of biobased latexes. Radical copolymerization of plant-oil-based monomers is described with the classical Mayo-Lewis equation. Using emulsion (or miniemulsion) polymerization with MMA or VAc, stable aqueous polymer dispersions with latex particles measuring 80-160 nm and containing 3-35 wt % of biobased monomer units were successfully synthesized. The number-average molecular weight of the latex copolymers (20 000-150 000) decreases by increasing the degree of unsaturation in monomers and their content in the reaction feed. The presence of plant-oil-based fragments changes the of resulting copolymers from 105 to 79 °C in copolymerization with MMA and from 30 to 11 °C in copolymerization with Vac. As a result, biobased units provide considerable flexibility (elongation at break of about 250%) and improve the toughness of the normally rigid and brittle poly(MMA). Even a small amount (2-5%) of biobased fragments incorporated into the structure of poly(VAc) significantly improves water resistance and provides hydrophobicity to the resulting polymer latex films. The obtained results clearly indicate that the vinyl monomers from plant oils can be considered as good candidates for internal plasticization of polymeric materials through reducing intermolecular interactions in copolymers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6640796 | PMC |
http://dx.doi.org/10.1021/acsomega.6b00308 | DOI Listing |
Int J Biol Macromol
January 2025
Polymers Department, Faculty of Chemical Sciences, University of Concepción, Box 160-C, Concepción 4070371, Chile. Electronic address:
The contamination of water systems by antibiotics such as ciprofloxacin (CIP), which is used to treat bacterial infections, poses severe risks to environmental safety and public health. To address this issue, a novel zwitterionic polymeric nanocomposite (PNs-HTC) was developed in this study. This novel material was synthesized using alkylated chitosan ionic macromonomers, ionic monomers and combined with hydrotalcite (HTC) via in situ free radical polymerization.
View Article and Find Full Text PDFJ Mol Model
January 2025
Escuela Superior de Física y Matemáticas, IPN S/N, Edificio 9 de la Unidad Profesional "Adolfo López Mateos", Col. Lindavista, Alc. Gustavo A. Madero, 07738, Mexico City, Mexico.
Context: "Nanostructure of graphene-reinforced with polymethyl methacrylate" (PMMA-G), and vice versa, is investigated using its molecular structure, in the present work. The PMMA-G nanostructure was constructed by bonding PMMA with graphene nanosheet in a sense to get three different configurations. Each configuration consisted of polymeric structures with three degrees of polymerization (such as monomers, dimers, and trimers polymers, respectively).
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
Faculty of Dentistry, University of Toronto, 124 Edward St, Toronto, ON, M5G 1G6, Canada.
Dental resin-based restorative (RBR) materials represent the most ubiquitous biomaterials utilized globally. Methacrylate (MA)-ester based monomers - present in RBRs since the 1960s - experience significantly elevated rates of failure compared to previously used silver/amalgam fillings attributed to their hydrolysis reported in both simulated and in vivo environments. There is currently no alternative RBR chemistry that matches the functional and clinical workflow considerations of MA-RBRs while addressing their limited-service lives.
View Article and Find Full Text PDFChem Sci
January 2025
Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay 91400 Orsay France +33-180006081.
The synthesis of degradable polymer prodrug nanoparticles is still a challenge to be met, which would make it possible to remedy both the shortcomings of traditional formulation of preformed polymers (, low nanoparticle concentrations) and those of the physical encapsulation of drugs (, burst release and poor drug loadings). Herein, through the combination of radical ring-opening polymerization (rROP) and polymerization-induced self-assembly (PISA) under appropriate experimental conditions, we report the successful preparation of high-solid content, degradable polymer prodrug nanoparticles, exhibiting multiple drug moieties covalently linked to a degradable vinyl copolymer backbone. Such a rROPISA process relied on the chain extension of a biocompatible poly(ethylene glycol)-based solvophilic block with a mixture of lauryl methacrylate (LMA), cyclic ketene acetal (CKA) and drug-bearing methacrylic esters by reversible addition fragmentation chain transfer (RAFT) copolymerization at 20 wt% solid content.
View Article and Find Full Text PDFMacromol Rapid Commun
January 2025
Institut für Chemie, Technische Universität Chemnitz, Straße der Nationen 62, 09111, Chemnitz, Germany.
Aromatic diimides such as naphthalene diimide (NDI) and pyromellitic diimide (MDI) are important building blocks for organic electrode materials. They feature a two-electron redox mechanism that allows for energy storage. Due to the smaller size of MDI compared to NDI its theoretical capacity is higher.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!