Five anaerobic bacteria were tested for their abilities to transform tetrachloromethane so that information about enzymes involved in reductive dehalogenations of polychloromethanes could be obtained. Cultures of the sulfate reducer Desulfobacterium autotrophicum transformed some 80 microM tetrachloromethane to trichloromethane and a small amount of dichloromethane in 18 days under conditions of heterotrophic growth. The acetogens Acetobacterium woodii and Clostridium thermoaceticum in fructose-salts and glucose-salts media, respectively, degraded some 80 microM tetrachloromethane completely within 3 days. Trichloromethane accumulated as a transient intermediate, but the only chlorinated methanes recovered at the end of the incubation were 8 microM dichloromethane and traces of chloromethane. Desulfobacter hydrogenophilus and an autotrophic, nitrate-reducing bacterium were unable to transform tetrachloromethane. Reduction of chlorinated methanes was thus observed only in the organisms with the acetyl-coenzyme A pathway. Experiments with [14C]tetrachloromethane were done to determine the fate of this compound in the acetogen A. woodii. Radioactivity in an 11-day heterotrophic culture was largely (67%) recovered in CO2, acetate, pyruvate, and cell material. In experiments with cell suspensions to which [14C]tetrachloromethane was added, 14CO2 appeared within 20 s as the major transformation product. A. woodii thus catalyzes reductive dechlorinations and transforms tetrachloromethane to CO2 by a series of unknown reactions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC204379 | PMC |
http://dx.doi.org/10.1128/aem.54.11.2819-2824.1988 | DOI Listing |
Bioresour Technol
December 2024
Chemical Engineering Laboratory, Faculty of Sciences and Interdisciplinary Centre of Chemistry and Biology - Centro Interdisciplinar de Química y Biología (CICA), BIOENGIN Group, University of La Coruña (UDC), E-15008 La Coruña, Spain. Electronic address:
Acetobacterium woodii and Megasphaera hexanoica were co-cultured for caproic acid (CA) production from lactic acid (LA) and CO. Also, various concentrations (1 g/L, 3 g/L, 5 g/L, and 10 g/L) of Zero Valent Iron (ZVI) were supplied to study its impact on the co-culture system. In flask experiments, 10 g/L LA and 1.
View Article and Find Full Text PDFAppl Environ Microbiol
September 2024
Department of Biochemistry, Molecular Biology & Biophysics, BioTechnology Institute, University of Minnesota, St. Paul, Minnesota, USA.
Unlabelled: The acetogen couples caffeate reduction with ferredoxin reduction and NADH oxidation via electron bifurcation, providing additional reduced ferredoxin for energy conservation and cell synthesis. Caffeate is first activated by an acyl-CoA synthetase (CarB), which ligates CoA to caffeate at the expense of ATP. After caffeoyl-CoA is reduced to hydrocaffeoyl-CoA, the CoA moiety in hydrocaffeoyl-CoA could be recycled for caffeoyl-CoA synthesis by an ATP-independent CoA transferase (CarA) to save energy.
View Article and Find Full Text PDFMicrob Cell Fact
July 2024
Institute of Molecular Biology and Biotechnology of Prokaryotes, University of Ulm, Ulm, Germany.
Background: Acetogens, a diverse group of anaerobic autotrophic bacteria, are promising whole-cell biocatalysts that fix CO during their growth. However, because of energetic constraints, acetogens exhibit slow growth and the product spectrum is often limited to acetate. Enabling acetogens to form more valuable products such as volatile fatty acids during autotrophic growth is imperative for cementing their place in the future carbon neutral industry.
View Article and Find Full Text PDFNat Commun
June 2024
Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Max-von-Laue Str. 9, Frankfurt, Germany.
Anaerobic, acetogenic bacteria are well known for their ability to convert various one-carbon compounds, promising feedstocks for a future, sustainable biotechnology, to products such as acetate and biofuels. The model acetogen Acetobacterium woodii can grow on CO, formate or methanol, but not on carbon monoxide, an important industrial waste product. Since hydrogenases are targets of CO inhibition, here, we genetically delete the two [FeFe] hydrogenases HydA2 and HydBA in A.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
June 2024
Research Institute of Innovative Technology for the Earth, 9-2, Kizugawadai, Kizugawa-shi, Kyoto, 619-0292, Japan.
Ethylene glycol (EG) is an industrially important two-carbon diol used as a solvent, antifreeze agent, and building block of polymers such as poly(ethylene terephthalate) (PET). Recently, the use of EG as a starting material for the production of bio-fuels or bio-chemicals is gaining attention as a sustainable process since EG can be derived from materials not competing with human food stocks including CO, syngas, lignocellulolytic biomass, and PET waste. In order to design and construct microbial process for the conversion of EG to value-added chemicals, microbes capable of catabolizing EG such as Escherichia coli, Pseudomonas putida, Rhodococcus jostii, Ideonella sakaiensis, Paracoccus denitrificans, and Acetobacterium woodii are candidates of chassis for the construction of synthetic pathways.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!