Background: Many physical and mechanical phenomena occur during the acupuncture and tuina regime, and pressure is one of the most basic mechanical phenomena.
Objectives: To understand the cellular bio-physical mechanism of basic mechanical stimulation via acupuncture and tuina by investigating the effect of different pressures on the cell viability and protein expression differences that originate from the facial fibroblasts around the meridians.
Materials And Methods: culture of the facial fibroblasts around the meridians was conducted using different pressures to perform single and multiple stimulation(s) on the cells. Thus, the changes in the fibroblast cell viability (cell viability rate and diameter) were tested, and changes in the fibroblast protein expression were observed.
Results: We found that the pressure stimulation may excite the fascial fibroblast viability at the acupoint and increase cell viability. Two interactive factors are involved: the pressure intensity and the number of pressure stimulations. In addition, we found that all three pressures lead to significant regulation effects on the protein expression of the meridian-related fascial tissue fibroblasts, and clustering analysis revealed that 100 kPa pressure stimulation exhibits the most evident effect on the protein expression which is the pressure inducing the most differentiated protein expression.
Conclusions: During the pressure process, the difference in the cell viability rate and protein expression of the facial fibroblasts around the meridians may (from a cell mechanics' point-of-view) reveal the cytobiological and therapeutic mechanism of the basic mechanical stimulation via acupuncture and tuina on the facial fibroblasts around the meridians.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6697856 | PMC |
http://dx.doi.org/10.21859/ijb.1863 | DOI Listing |
J Clin Oncol
January 2025
Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Chinese University of China, Shatin, Hong Kong Special Administrative Region, China.
Purpose: Mobocertinib is an oral epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor that targets exon 20 insertion (ex20ins) mutations in non-small cell lung cancer (NSCLC). This open-label, phase III trial (EXCLAIM-2: ClinicalTrials.gov identifier: NCT04129502) compared mobocertinib versus platinum-based chemotherapy as first-line treatment of ex20ins+ advanced/metastatic NSCLC.
View Article and Find Full Text PDFJ Appl Oral Sci
January 2025
Ningde Hospital Affiliated to Ningde Normal University, Department of Stomatology, Fujian, China.
Objective: This study aimed to investigate the role of transmembrane emp24 domain-containing protein 2 (TMED2) in oral squamous cell carcinoma (OSCC).
Methodology: A bioinformatics analysis was first conducted to explore TMED2 expression in OSCC and its relation with overall survival. The analysis results were further verified by assessing TMED2 expression levels in human normal oral keratinocyte cells and human OSCC cell lines using quantitative real-time polymerase chain reaction and the Western blot.
Clin Cancer Res
January 2025
Roswell Park Cancer Institute, Buffalo, NY, United States.
Background: Data in clear cell renal cell carcinoma (ccRCC) xenografts defined the seleno-L-methionine (SLM) dose and the plasma selenium concentrations associated with the enhancement of HIF1α/2α degradation, stabilization of tumor vasculature, enhanced drug delivery, and efficacy of axitinib. The data provided the rationale for the development of this phase I clinical trial of SLM and axitinib in advanced or metastatic relapsed ccRCC.
Patients And Methods: Patients were ≥18 years with histologically and radiologically confirmed advanced or metastatic ccRCC who had received at least one prior systemic therapy, which could include axitinib (last dose ≥6 months prior to enrollment).
Mol Pharm
January 2025
Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia 23298, United States.
Chemotherapy-induced peripheral neuropathy (CIPN) is a serious side effect of anticancer agents with limited effective preventive or therapeutic interventions. Although fenofibrate, a peroxisome proliferator-activated receptor-alpha (PPARα) agonist, has demonstrated neuroprotective and analgesic properties, its clinical utility is hindered by low receptor affinity, poor subtype selectivity, and suboptimal bioavailability. A190, a highly selective and potent nonfibrate PPARα agonist, offers a promising alternative but is limited by poor aqueous solubility, resulting in reduced oral bioavailability and therapeutic efficacy.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2025
Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada.
ClpXP is a two-component mitochondrial matrix protease. The caseinolytic mitochondrial matrix peptidase chaperone subunit X (ClpX) recognizes and translocates protein substrates into the degradation chamber of the caseinolytic protease P (ClpP) for proteolysis. ClpXP degrades damaged respiratory chain proteins and is necessary for cancer cell survival.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!