Induces Plant-Dependent Systemic Resistance to .

Front Plant Sci

Departament d'Enginyeria Agroalimentària i Biotecnologia, Universitat Politècnica de Catalunya, Barcelona, Spain.

Published: August 2019

spp. are the most damaging plant parasitic nematodes for horticultural crops worldwide. is a fungal egg parasite of root-knot and cyst nematodes able to colonize the roots of several plant species and shown to induce plant defense mechanisms in fungal-plant interaction studies, and local resistance in fungal-nematode-plant interactions. This work demonstrates the differential ability of two out of five isolates, M10.43.21 and M10.55.6, to induce systemic resistance against in tomato but not in cucumber in split-root experiments. The M10.43.21 isolate reduced infection (32-43%), reproduction (44-59%), and female fecundity (14.7-27.6%), while the isolate M10.55.6 only reduced consistently nematode reproduction (35-47.5%) in the two experiments carried out. The isolate M10.43.21 induced the expression of the salicylic acid pathway ( gene) in tomato roots 7 days after being inoculated with the fungal isolate and just after nematode inoculation, and at 7 and 42 days after nematode inoculation too. The jasmonate signaling pathway ( gene) was also upregulated at 7 days after nematode inoculation. Thus, some isolates of can induce systemic resistance against root-knot nematodes but this is plant species dependent.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6700505PMC
http://dx.doi.org/10.3389/fpls.2019.00945DOI Listing

Publication Analysis

Top Keywords

systemic resistance
12
nematode inoculation
12
plant species
8
induce systemic
8
pathway gene
8
days nematode
8
induces plant-dependent
4
plant-dependent systemic
4
resistance
4
resistance spp
4

Similar Publications

Introduction: Since the dawn of the new millennium, Candida species have been increasingly implicated as a cause of both healthcare-associated as well as opportunistic yeast infections, due to the widespread use of indwelling medical devices, total parenteral nutrition, systemic corticosteroids, cytotoxic chemotherapy, and broad-spectrum antibiotics. Candida tropicalis is a pathogenic Candida species associated with considerable morbidity, mortality, and drug resistance issues on a global scale.

Methodology: We report a case of a 43-year-old man who was admitted to our hospital for further management of severe coronavirus disease 2019 (COVID-19) pneumonia.

View Article and Find Full Text PDF

Background: Atrial fibrillation (AF) is the most prevalent arrhythmia encountered in clinical practice. Triglyceride glucose index (Tyg), a convenient evaluation variable for insulin resistance, has shown associations with adverse cardiovascular outcomes. However, studies on the Tyg index's predictive value for adverse prognosis in patients with AF without diabetes are lacking.

View Article and Find Full Text PDF

Background: Nonocclusive mesenteric ischemia (NOMI), a subtype of acute mesenteric ischemia, is primarily caused by mesenteric arterial vasoconstriction and decreased vascular resistance, leading to impaired intestinal perfusion.Commonly observed after cardiac surgery, NOMI affects older patients with cardiovascular or systemic diseases, accounting for 20-30% of acute mesenteric ischemia cases with a mortality rate of ∼50%. This review explores NOMI's pathophysiology, clinical implications in aortic dissection, and the unmet needs in diagnosis and management, emphasizing its prognostic significance.

View Article and Find Full Text PDF

Visceral leishmaniasis is a systemic disease that affects various internal organs and represents the most severe and fatal form of leishmaniasis. Conventional treatment presents significant challenges, such as prolonged management in hospital settings, high toxicity, and an increasing growing number of cases of resistance. In previous studies, our research group demonstrated the effective and selective activity of the 2-amino-thiophene derivative SB-83 in preclinical models of cutaneous leishmaniasis.

View Article and Find Full Text PDF

The use of biological control agents is one of the best strategies available to combat the plant diseases in an ecofriendly manner. Biocontrol bacteria capable of providing beneficial effect in crop plant growth and health, have been developed for several decades. It highlights the need for a deeper understanding of the colonization mechanisms employed by biocontrol bacteria to enhance their efficacy in plant pathogen control.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!