Characterization of Protein Radicals in Arabidopsis.

Front Physiol

Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czechia.

Published: August 2019

Oxidative modification of proteins in photosystem II (PSII) exposed to high light has been studied for a few decades, but the characterization of protein radicals formed by protein oxidation is largely unknown. Protein oxidation is induced by the direct reaction of proteins with reactive oxygen species known to form highly reactive protein radicals comprising carbon-centered (alkyl) and oxygen-centered (peroxyl and alkoxyl) radicals. In this study, protein radicals were monitored in Arabidopsis exposed to high light by immuno-spin trapping technique based on the detection of 5,5-dimethyl-1-pyrroline N-oxide (DMPO) nitrone adducts using the anti-DMPO antibody. Protein radicals were imaged in Arabidopsis leaves and chloroplasts by confocal laser scanning microscopy using fluorescein conjugated with the anti-DMPO antibody. Characterization of protein radicals by standard blotting techniques using PSII protein specific antibodies shows that protein radicals are formed on D1, D2, CP43, CP47, and Lhcb3 proteins. Protein oxidation reflected by the appearance/disappearance of the protein bands reveals that formation of protein radicals was associated with protein fragmentation (cleavage of the D1 peptide bonds) and aggregation (cross-linking with another PSII subunits). Characterization of protein radical formation is important for better understating of the mechanism of oxidative modification of PSII proteins under high light.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6700370PMC
http://dx.doi.org/10.3389/fphys.2019.00958DOI Listing

Publication Analysis

Top Keywords

protein radicals
32
characterization protein
16
protein
14
high light
12
protein oxidation
12
radicals
9
oxidative modification
8
exposed high
8
radicals formed
8
anti-dmpo antibody
8

Similar Publications

Hybridisation of in silico and in vitro bioassays for studying the activation of Nrf2 by natural compounds.

Sci Rep

December 2024

University of Health Sciences, Vietnam National University Ho Chi Minh City, YA1 Administrative Building, Hai Thuong Lan Ong Street, Dong Hoa Ward, Di An City, Binh Duong Province, 75308, Vietnam.

Oxidative stress, characterized by the damaging accumulation of free radicals, is associated with various diseases, including cardiovascular, neurodegenerative, and metabolic disorders. The transcription factor Nrf2 is pivotal in cellular defense against oxidative stress by regulating genes that detoxify free radicals, thus maintaining redox homeostasis and preventing cellular aging. Keap1 plays a regulatory role through its interaction with Nrf2, ensuring Nrf2 degradation under homeostatic conditions and facilitating its stabilization and nuclear translocation during oxidative stress.

View Article and Find Full Text PDF

Whole genome and transcriptome analysis of pancreatic acinar cell carcinoma elucidates mechanisms of homologous recombination deficiency and unravels novel relevant fusion events.

Pathol Res Pract

December 2024

Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 1300 York Ave, New York, NY 10065,  USA; Englander Institute for Precision Medicine, Weill Cornell Medicine, 413 East 69th Street, New York, NY 10021, USA. Electronic address:

Pancreatic acinar cell carcinoma (PACC) is a rare pancreatic tumor with a heterogeneous clinical course and, except for radical surgery, limited treatment options. We present a comprehensive study encompassing whole-genome and RNA sequencing of 7 tumor samples from 3 metastatic PACC patients to further delineate its genomic landscape and potential therapeutic implications. Our findings reveal distinct signatures of homologous recombination deficiency (HRD) in patients harboring pathogenic germline BRCA1/2 and FANCL mutations, demonstrating favorable responses to poly (ADP-ribose) polymerase 1 (PARP) inhibitors with prolonged disease-free intervals.

View Article and Find Full Text PDF

Excessive oxidation of protein and lipids in pork leads to quality degradation and loss of nutrients. Kappa-selenocarrageenan (Se-K) can not only be used as a selenium enhancer but also as an antioxidant. To explore potential antioxidants that could be applied to pork, the effect of Se-K on myofibrillar protein (MP) and lipid oxidation was investigated.

View Article and Find Full Text PDF

Exposure to reactive oxygen species (ROS) can induce DNA-protein crosslinks (DPCs), unusually bulky DNA lesions that block replication and transcription and play a role in aging, cancer, cardiovascular disease, and neurodegenerative disorders. Repair of DPCs depends on the coordinated efforts of proteases and DNA repair enzymes to cleave the protein component of the lesion to smaller DNA-peptide crosslinks which can be processed by tyrosyl-DNA phosphodiesterases 1 and 2, nucleotide excision and homologous recombination repair pathways. DNA-dependent metalloprotease SPRTN plays a role in DPC repair, and SPRTN-deficient mice exhibit an accelerated aging phenotype and develop liver cancer early in life.

View Article and Find Full Text PDF

Superoxide dismutase (SOD) plays important roles in the balance of oxidation and antioxidation in body mostly by scavenging superoxide anion free radicals (O). Previously, we reported a novel Cu/Zn SOD from jellyfish Cyanea capillata, named CcSOD1, which exhibited excellent SOD activity and high stability. TAT peptide is a common type of cell penetrating peptides (CPPs) that efficiently deliver extracellular biomacromolecules into cytoplasm.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!