KRAS is a member of the murine sarcoma virus oncogene-RAS gene family. It plays an important role in the prevention, diagnosis and treatment of tumors during tumor cell growth and angiogenesis. KRAS is the most commonly mutated oncogene in human cancers, such as pancreatic cancers, colon cancers, and lung cancers. Detection of KRAS gene mutation is an important indicator for tracking the status of oncogenes, highlighting the developmental prognosis of various cancers, and the efficacy of radiotherapy and chemotherapy. However, the efficacy of different patients in clinical treatment is not the same. Since RNA interference (RNAi) technologies can specifically eliminate the expression of specific genes, these technologies have been widely used in the field of gene therapy for exploring gene function, infectious diseases and malignant tumors. RNAi refers to the phenomenon of highly specific degradation of homologous mRNA induced by double-stranded RNA (dsRNA), which is highly conserved during evolution. There are three classical RNAi technologies, including siRNA, shRNA and CRISPR-Cas9 system, and a novel synthetic lethal interaction that selectively targets KRAS mutant cancers. Therefore, the implementation of individualized targeted drug therapy has become the best choice for doctors and patients. Thus, this review focuses on the current status, future perspective and associated challenges in silencing of KRAS with RNAi technology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/1568026619666190828162217 | DOI Listing |
Alzheimers Dement
December 2024
University College London, London, United Kingdom.
Background: Mivelsiran (ALN-APP) is an investigational, intrathecally administered RNA interference therapeutic designed to lower levels of amyloid-β (Aβ) peptide, a key driver of Alzheimer's disease (AD) and cerebral amyloid angiopathy (CAA) pathogenesis, by reducing upstream production of amyloid precursor protein (APP). We report additional safety, pharmacodynamic, and biomarker data from the double-blind, placebo-controlled, single ascending dose part of the ongoing mivelsiran Phase 1 study (NCT05231785).
Method: Patients with early-onset AD (symptom onset <65 years of age, Clinical Dementia Rating global score 0.
Int J Med Sci
January 2025
Department of Gastrointestinal Surgery, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
Chemotherapy resistance is a great challenge in the treatment of gastric cancer (GC), so it is urgent to explore the prognostic markers of chemoresistance. PUF60 (Poly (U)-binding splicing factor 60) is a nucleic acid-binding protein that has been shown to regulate transcription and link to tumorigenesis in various cancers. However, its biological role and function in chemotherapy resistance of GC is unclear.
View Article and Find Full Text PDFJ Saudi Heart Assoc
December 2024
College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.
Objectives: Zilebesiran is an investigational RNA interference therapeutic designed to lower blood pressure by targeting the hepatic production of angiotensinogen, the most upstream precursor of the renin-angiotensin-aldosterone system. This approach aims to offer long-lasting blood pressure control with potentially fewer doses compared to traditional antihypertensive medications. The objective of this systematic review and meta-analysis was to assess the antihypertensive efficacy of zilebesiran in patients with hypertension.
View Article and Find Full Text PDFBiomater Res
January 2025
Cellular Reprogramming and Embryo Biotechnology Laboratory, Dental Research Institute, Seoul National University School of Dentistry, Seoul 08826, Republic of Korea.
Angiogenesis is mediated by vascular endothelial growth factor (VEGF), a protein that plays a key role in wound healing, inflammatory diseases, cardiovascular processes, ocular diseases, and tumor growth. Indeed, modulation of angiogenesis represents a potential approach to treating cancer and, as such, therapeutic approaches targeting VEGF and its receptors have been widely investigated as part of the broader search for curative interventions. Equally, RNA interference is a powerful tool for treating diseases, but its application as a disease treatment has been limited in part because of a lack of efficient small interfering RNA (siRNA) delivery systems.
View Article and Find Full Text PDFEnviron Microbiome
January 2025
Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden.
Background: Fusarium head blight (FHB) is a major disease affecting cereal crops including wheat, barley, rye, oats and maize. Its predominant causal agent is the ascomycete fungus Fusarium graminearum, which infects the spikes and thereby reduces grain yield and quality. The frequency and severity of FHB epidemics has increased in recent years, threatening global food security.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!