Weak interactions form the core basis of a vast number of biological processes, in particular, those involving intrinsically disordered proteins. Here, we establish a new technique capable of probing these weak interactions between synthetic unfolded polypeptides using a convenient yet efficient, quantitative method based on single particle tracking of peptide-coated gold nanoparticles over peptide-coated surfaces. We demonstrate that our technique is sensitive enough to observe the influence of a single amino acid mutation on the transient peptide-peptide interactions. Furthermore, the effects of buffer salinity, which are expected to alter weak electrostatic interactions, are also readily detected and examined in detail. The method presented here has the potential to evaluate, in a high-throughput manner, weak interactions for a wide range of disordered proteins, polypeptides, and other biomolecules.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.9b02764DOI Listing

Publication Analysis

Top Keywords

weak interactions
12
peptide-peptide interactions
8
disordered proteins
8
interactions
6
weak
5
nanoparticle mobility
4
mobility surface
4
surface probe
4
probe weak
4
weak transient
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!