Surface characterization is crucial for understanding how the atomic-level structure affects the chemical and photophysical properties of semiconducting nanoparticles (NPs). Solid-state nuclear magnetic resonance spectroscopy (NMR) is potentially a powerful technique for the characterization of the surface of NPs, but it is hindered by poor sensitivity. Dynamic nuclear polarization surface enhanced NMR spectroscopy (DNP SENS) has previously been demonstrated to enhance the sensitivity of surface-selective solid-state NMR experiments by 1-2 orders of magnitude. Established sample preparations for DNP SENS experiments on NPs require the dilution of the NPs on mesoporous silica. Using hexagonal boron nitride (-BN) to disperse the NPs doubles DNP enhancements and absolute sensitivity in comparison to standard protocols with mesoporous silica. Alternatively, precipitating the NPs as powders, mixing them with -BN, and then impregnating the powdered mixture with radical solution leads to further 4-fold sensitivity enhancements by increasing the concentration of NPs in the final sample. This modified procedure provides a factor of 9 improvement in NMR sensitivity in comparison to previously established DNP SENS procedures, enabling challenging homonuclear and heteronuclear 2D NMR experiments on CdS, Si, and CdP NPs. These experiments allow NMR signals from the surface, subsurface, and core sites to be observed and assigned. For example, we demonstrate the acquisition of DNP-enhanced 2D Cd-Cd correlation NMR experiments on CdS NPs and natural isotropic abundance 2D C-Si HETCOR of functionalized Si NPs. These experiments provide a critical understanding of NP surface structures.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.9b05509DOI Listing

Publication Analysis

Top Keywords

dnp sens
16
nmr experiments
12
nps
10
mesoporous silica
8
sensitivity comparison
8
experiments cds
8
nps experiments
8
nmr
7
experiments
6
dnp
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!