A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Photonic scheme of discrete quantum Fourier transform for quantum algorithms via quantum dots. | LitMetric

Photonic scheme of discrete quantum Fourier transform for quantum algorithms via quantum dots.

Sci Rep

College of Electrical and Computer Engineering, Chungbuk National University, Chungdae-ro 1, Seowon-Gu, Cheongju, Republic of Korea.

Published: August 2019

We propose an optical scheme of discrete quantum Fourier transform (DQFT) via ancillary systems using quantum dots (QDs) confined in single-sided cavities (QD-cavity systems). In our DQFT scheme, the main component is a controlled-rotation k (CRk) gate, which utilizes the interactions between photons and QDs, consisting of two QD-cavity systems. Since the proposed CRk gate can be experimentally implemented with high efficiency and reliable performance, the scalability of multi-qubit DQFT scheme can also be realized through the simple composition of the proposed CRk gates via the QD-cavity systems. Subsequently, in order to demonstrate the performance of the CRk gate, we analyze the interaction between a photon and a QD-cavity system, and then indicate the condition to be efficient CRk gate with feasibility under vacuum noise and sideband leakage.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6712008PMC
http://dx.doi.org/10.1038/s41598-019-48695-zDOI Listing

Publication Analysis

Top Keywords

crk gate
16
qd-cavity systems
12
scheme discrete
8
discrete quantum
8
quantum fourier
8
fourier transform
8
quantum dots
8
dqft scheme
8
proposed crk
8
quantum
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!