Objective: Pu-erh tea was presumed to have anti-hyperglycemic effects via inhibition on alpha-amylase and alpha-glucosidase. However, no integerated literatures were published to substantiate such presumption.

Methods: Current study adopted systemic review method to validate inhibitory effects on alpha amylase and alpha-glucosidase. Five English databases (PubMed, EBSCO, SCOPUS, Cochrane Library, Web of Science) and three Chinese ones (Airti Library, CNKI Library, and Google Scholar) were searched up to 22 March 2018 for eligible literatures, using keywords of Pu-erh, Pu'er, alpha-amylase or alpha-glucosidase.

Results: Six studies exploring inhibitory effects on alpha-glucosidase and seven on alpha-amylase were included for systemic review. Though results showed pu-erh tea has significant inhibitory effects on alpha-amylase and alpha-glucosidase, high heterogeneity was detected among studies included.

Conclusions: High heterogeneity may be due to complex alterations of chemicals under different degrees of fermentation. More future studies are required to further identify principal bioactive component(s) at work.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6712024PMC
http://dx.doi.org/10.1038/s41387-019-0092-yDOI Listing

Publication Analysis

Top Keywords

inhibitory effects
16
pu-erh tea
12
systemic review
12
alpha amylase
8
alpha-amylase alpha-glucosidase
8
high heterogeneity
8
inhibitory
4
pu-erh
4
effects pu-erh
4
tea alpha
4

Similar Publications

Natural killer (NK) cells have proven to be safe and effective immunotherapies, associated with favorable treatment responses in chronic myeloid leukemia (CML). Augmenting NK cell function with oncological drugs could improve NK cell-based immunotherapies. Here, we used a high-throughput drug screen consisting of over 500 small-molecule compounds to systematically evaluate the effects of oncological drugs on primary NK cells against CML cells.

View Article and Find Full Text PDF

The joint Simon effect refers to inhibitory responses to spatially competing stimuli during a complementary task. This effect has been considered to be influenced by the social factors of a partner: sharing stimulus-action representation. According to this account, virtual interactions through their avatars would produce the joint Simon effect even when the partner did not physically exist in the same space because the avatars are intentional agents.

View Article and Find Full Text PDF

Immune thrombocytopenia (ITP) is an autoimmune disorder characterized by reduced platelet levels and heightened susceptibility to bleeding resulting from augmented autologous platelet destruction and diminished thrombopoiesis. Although antibody-mediated autoimmune reactions are widely recognized as primary factors, the precise etiological agents that trigger ITP remain unidentified. The pathogenesis of ITP remains unclear owing to the absence of comprehensive high-throughput data, except for the belated emergence of autoreactive antibodies.

View Article and Find Full Text PDF

The mesopontine tegmental anesthesia area (MPTA) is a focal brainstem locus which, when exposed to GABAergic agents, induces brain-state transitioning from wakefulness to unconsciousness. Correspondingly, MPTA lesions render animals relatively insensitive to GABAergic anesthetics delivered systemically. Using chemogenetics, we recently identified a neuronal subpopulation within the MPTA whose excitation induces this same pro-anesthetic effect.

View Article and Find Full Text PDF

Esophageal carcinoma is a highly prevalent malignancy worldwide. The present study aimed to investigate the mechanism by which the natural compound coptisine affects pyroptosis in esophageal squamous cell carcinoma (ESCC). The expression of c-Met in ESCC patients was assessed by immunohistochemical analysis of tissue microarrays.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!