Objective: The American Diabetes Association recommends individuals with type 1 diabetes (T1D) adjust insulin for dietary fat; however, optimal adjustments are not known. This study aimed to determine ) the relationship between the amount and type of dietary fat and glycemia and ) the optimal insulin adjustments for dietary fat.

Research Design And Methods: Adults with T1D using insulin pump therapy attended the research clinic on 9-12 occasions. On the first six visits, participants consumed meals containing 45 g carbohydrate with 0 g, 20 g, 40 g, or 60 g fat and either saturated, monounsaturated, or polyunsaturated fat. Insulin was dosed using individual insulin/carbohydrate ratio as a dual-wave 50/50% over 2 h. On subsequent visits, participants repeated the 20-60-g fat meals with the insulin dose estimated using a model predictive bolus, up to twice per meal, until glycemic control was achieved.

Results: With the same insulin dose, increasing the amount of fat resulted in a significant dose-dependent reduction in incremental area under the curve for glucose (iAUC) in the early postprandial period (0-2 h; = 0.008) and increase in iAUC in the late postprandial period (2-5 h; = 0.004). The type of fat made no significant difference to the 5-h iAUC. To achieve glycemic control, on average participants required dual-wave insulin bolus: for 20 g fat, +6% insulin, 74/26% over 73 min; 40 g fat, +6% insulin, 63/37% over 75 min; and 60 g fat, +21% insulin, 49/51% over 105 min.

Conclusions: This study provides clinical guidance for mealtime insulin dosing recommendations for dietary fat in T1D.

Download full-text PDF

Source
http://dx.doi.org/10.2337/dc19-0687DOI Listing

Publication Analysis

Top Keywords

dietary fat
16
fat
12
insulin
12
amount type
8
type dietary
8
type diabetes
8
visits participants
8
insulin dose
8
glycemic control
8
postprandial period
8

Similar Publications

Recent studies have suggested that the interaction between diet and an individual's genetic predisposition can determine the likelihood of obesity and various metabolic disorders. The current study aimed to examine the association of dietary branched-chain amino acids(BCAAs) and aromatic amino acids(AAAs) with the expression of the leptin and FTO genes in the visceral and subcutaneous adipose tissues of individuals undergoing surgery. This cross-sectional study was conducted on 136 Iranian adults, both men and women, aged ≥18 years.

View Article and Find Full Text PDF

Purpose Of Review: This narrative review explores the role of Medical Nutritional Therapy (MNT) in managing Metabolic-Associated Steatotic Liver Disease (MASLD), previously known as nonalcoholic fatty liver disease. It aims to examine the effectiveness of specific nutritional strategies in preventing and treating this obesity-linked liver disease.

Recent Findings: Emerging evidence underscores the benefits of the Mediterranean diet, low-carbohydrate diets, and intermittent fasting in reducing liver fat, improving insulin sensitivity, and mitigating inflammation.

View Article and Find Full Text PDF

Aim: Time-restricted eating (TRE) limits the time for food intake to typically 6-10 h/day without other dietary restrictions. The aim of the RESET2 (the REStricted Eating Time in the treatment of type 2 diabetes) trial is to investigate the effects on glycaemic control (HbA) and the feasibility of a 1-year TRE intervention in individuals with overweight/obesity and type 2 diabetes. The aim of the present paper is to describe the protocol for the RESET2 trial.

View Article and Find Full Text PDF

Background: β-Hydroxy-β-methyl butyrate (HMB) is a metabolite of the amino acid leucine, known for its ergogenic effects on body composition and strength. Despite these benefits, the magnitude of these effects remains unclear due to variability among studies. This umbrella review aims to synthesize meta-analyses investigating the effects of HMB on body composition and muscle strength in adults.

View Article and Find Full Text PDF

A Randomized Pilot Study of Time-Restricted Eating Shows Minimal Microbiome Changes.

Nutrients

January 2025

Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA.

Objective: TRE is an emerging approach in obesity treatment, yet there is limited data on how it influences gut microbiome composition in humans. Our objective was to characterize the gut microbiome of human participants before and after a TRE intervention. This is a secondary analysis of a previously published clinical trial examining the effects of time-restricted eating (TRE).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!