CYP3A4 Induction in the Liver and Intestine of Pregnane X Receptor/CYP3A-Humanized Mice: Approaches by Mass Spectrometry Imaging and Portal Blood Analysis.

Mol Pharmacol

Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba (K.K., G.M.); Discovery Drug Metabolism & Pharmacokinetics, Tsukuba Research Center, Taiho Pharmaceutical Co., Ltd., Ibaraki (J.Ku.); Chromosome Engineering Research Center (CERC), Tottori University, Tottori (S.A., S.T., M.O., Y.K.); Laboratory of Biofunctional Science, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, Tokyo (K.I.); Division of Cellular and Molecular Toxicology, Biological Safety Research Center, National Institutes of Health Sciences, Kanagawa (S.K., J.Ka.); Japan Bioassay Research Center, Japan Organization of Occupational Health and Safety, Kanagawa (J.Ka.); Analytical & Measuring Instruments Division, Shimadzu Corporation, Kyoto (T.Y.); and Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Tottori (Y.K.), Japan

Published: November 2019

Induction of cytochrome P450 enzyme 3A (CYP3A) in response to pregnane X receptor (PXR) activators shows species-specific differences. To study the induction of human CYP3A in response to human PXR activators, we generated a double-humanized mouse model of PXR and CYP3A. CYP3A-humanized mice generated by using a mouse artificial chromosome (MAC) vector containing the entire genomic human CYP3A locus (hCYP3A-MAC mouse line) were bred with PXR-humanized mice in which the ligand-binding domain of mouse PXR was replaced with that of human PXR, resulting in double-humanized mice (hCYP3A-MAC/hPXR mouse line). Oral administration of the human PXR activator rifampicin increased hepatic expression of CYP3A4 mRNA and triazolam (TRZ) 1'- and 4-hydroxylation activities, CYP3A probe activities, in the liver and intestine microsomes of hCYP3A-MAC/hPXR mice. The plasma concentration of TRZ after oral dosing was significantly decreased by rifampicin treatment in hCYP3A-MAC/hPXR mice but not in hCYP3A-MAC mice. In addition, mass spectrometry imaging analysis showed that rifampicin treatment increased the formation of hydroxy TRZ in the intestine of hCYP3A-MAC/hPXR mice after oral dosing of TRZ. The plasma concentration of 1'- and 4-hydroxy TRZ in portal blood was also increased by rifampicin treatment in hCYP3A-MAC/hPXR mice. These results suggest that the hCYP3A-MAC/hPXR mouse line may be a useful model to predict human PXR-dependent induction of metabolism of CYP3A4 substrates in the liver and intestine. SIGNIFICANCE STATEMENT: We generated a double-humanized mouse line for CYP3A and PXR. Briefly, CYP3A-humanized mice generated by using a mouse artificial chromosome vector containing the entire genomic human CYP3A locus were bred with PXR-humanized mice in which the ligand-binding domain of mouse PXR was replaced with that of human PXR. Expression of CYP3A4 and metabolism of triazolam, a typical CYP3A substrate, in the liver of CYP3A/PXR-humanized mice were enhanced in response to rifampicin, a typical human PXR activator. Enhancement of triazolam metabolism in the intestine of CYP3A/PXR-humanized mice was firstly shown by combination of mass spectrometry imaging of sliced intestine and liquid chromatography with tandem mass spectrometry analysis of metabolite concentration in portal blood after oral dosing of triazolam.

Download full-text PDF

Source
http://dx.doi.org/10.1124/mol.119.117333DOI Listing

Publication Analysis

Top Keywords

human pxr
20
mass spectrometry
16
hcyp3a-mac/hpxr mice
16
mice
13
liver intestine
12
spectrometry imaging
12
portal blood
12
human cyp3a
12
oral dosing
12
rifampicin treatment
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!