We found a novel role of Myo5, a type I myosin (myosin-I), and its fortuitous association with d-amino acid utilization in Myo5 colocalized with actin cortical patches and was required for endocytosis. Interestingly, the mutant accumulated high levels of d-proline and d-alanine which caused toxicity in cells. The mutant also accumulated a large set of substrates, such as membrane-permeant as well as non-membrane-permeant dyes, l-proline, l-alanine, and flucytosine intracellularly. Furthermore, the efflux rate of fluorescein was significantly increased in the mutant. Importantly, the endocytic defect of the mutant did not affect the localization of the proline permease and flucytosine transporter. These data indicate that the substrate accumulation phenotype is not solely due to a defect in endocytosis, but the membrane properties may have been altered in the mutant. Consistent with this, the sterol staining pattern of the mutant was different from that of the wild type, and the mutant was hypersensitive to amphotericin B. It appears that the changes in sterol distribution may have caused altered membrane permeability in the mutant, allowing increased accumulation of substrate. Moreover, myosin-I mutants generated in several other yeast species displayed a similar substrate accumulation phenotype. Thus, fungal type I myosin appears to play an important role in regulating membrane permeability. Although the substrate accumulation phenotype was detected in strains with mutations in the genes involved in actin nucleation, the phenotype was not shared in all endocytic mutants, indicating a complicated relationship between substrate accumulation and endocytosis., one of the etiological agents of cryptococcosis, can be distinguished from its sister species by growth on d-amino acids. affected the growth of on d-amino acids. The cells accumulated high levels of various substrates from outside the cells, and excessively accumulated d-amino acids appeared to have caused toxicity in the cells. We provide evidence on the alteration of membrane properties in the mutants. Additionally, alteration in the membrane permeability causing higher substrate accumulation is associated with the changes in the sterol distribution. Furthermore, myosin-I in three other yeasts also manifested a similar role in substrate accumulation. Thus, while fungal myosin-I may function as a classical myosin-I, it has hitherto unknown additional roles in regulating membrane permeability. Since deletion of fungal myosin-I causes significantly elevated susceptibility to multiple antifungal drugs, it could serve as an effective target for augmentation of fungal therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6712397PMC
http://dx.doi.org/10.1128/mBio.01867-19DOI Listing

Publication Analysis

Top Keywords

substrate accumulation
24
membrane permeability
16
type myosin
12
regulating membrane
12
membrane properties
12
accumulation phenotype
12
d-amino acids
12
novel role
8
fungal type
8
association d-amino
8

Similar Publications

Peptides are widely used in biomaterials due to their ease of synthesis, ability to signal cells, and modify the properties of biomaterials. A key benefit of using peptides is that they are natural substrates for cell-secreted enzymes, which creates the possibility of utilizing cell-secreted enzymes for tuning cell-material interactions. However, these enzymes can also induce unwanted degradation of bioactive peptides in biomaterials, or in peptide therapies.

View Article and Find Full Text PDF

Upregulated astrocyte HDAC7 induces Alzheimer-like tau pathologies via deacetylating transcription factor-EB and inhibiting lysosome biogenesis.

Mol Neurodegener

January 2025

College of Life Sciences and Oceanography, Brain Disease and Big Data Research Institute, Shenzhen University, Shenzhen, 518060, Guangdong, China.

Background: Astrocytes, the most abundant glial cell type in the brain, will convert into the reactive state in response to proteotoxic stress such as tau accumulation, a characteristic feature of Alzheimer's disease (AD) and other tauopathies. The formation of reactive astrocytes is partially attributed to the disruption of autophagy lysosomal signaling, and inhibiting of some histone deacetylases (HDACs) has been demonstrated to reduce the molecular and functional characteristics of reactive astrocytes. However, the precise role of autophagy lysosomal signaling in astrocytes that regulates tau pathology remains unclear.

View Article and Find Full Text PDF

Two glycoside hydrolase family 1 proteins mediate glycosylated modification at the 5-position of anthocyanin in grape hyacinth.

Int J Biol Macromol

January 2025

College of Landscape Architecture and Art, Northwest A & F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Northwest A & F University, Yangling, Shaanxi 712100, China. Electronic address:

Glycosylation modification of anthocyanins is important as a preceding step to acylation modification. Cyanidin-3-O-(p-coumaroyl)glucoside-5-O-malonylglucoside (Cy3pCG5MaG) is one of the major anthocyanin substances in blue-flowered grape hyacinth, but its 5-position glycosylation is unknown. Here, we identified two glycoside hydrolase family 1 genes, MaAGGT1 and MaAGGT5, which use acyl-glucose as a donor and are involved in the glycosylation modification of anthocyanins in grape hyacinth.

View Article and Find Full Text PDF

Microglia modulate their cell state in response to various stimuli. Changes to cellular lipids often accompany shifts in microglial cell state, but the functional significance of these metabolic changes remains poorly understood. In human induced pluripotent stem cell-derived microglia, we observed that both extrinsic activation (by lipopolysaccharide treatment) and intrinsic triggers (the Alzheimer's disease-associated genotype) result in accumulation of triglyceride-rich lipid droplets.

View Article and Find Full Text PDF

Warming associated with climate change is driving poleward shifts in the marine habitat of anadromous Pacific salmon ( spp.). Yet the spawning locations for salmon to establish self-sustaining populations and the consequences for the ecosystem if they should do so are unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!