Multiple Organ Dysfunction Syndrome.

J Intensive Care Med

Department of Intensive Care Medicine, Derriford Hospital, 6634University Hospitals Plymouth NHS Trust, Plymouth, United Kingdom.

Published: December 2020

Multiple organ dysfunction syndrome (MODS) is one of the most common syndromes of critical illness and the leading cause of mortality among critically ill patients. Multiple organ dysfunction syndrome is the clinical consequence of a dysregulated inflammatory response, triggered by clinically diverse factors with the main pillar of management being invasive organ support. During the last years, the advances in the clarification of the molecular pathways that trigger, mitigate, and determine the outcome of MODS have led to the increasing recognition of MODS as a distinct disease entity with distinct etiology, pathophysiology, and potential future therapeutic interventions. Given the lack of effective treatment for MODS, its early recognition, the early intensive care unit admission, and the initiation of invasive organ support remain the most effective strategies of preventing its progression and improving outcomes.

Download full-text PDF

Source
http://dx.doi.org/10.1177/0885066619871452DOI Listing

Publication Analysis

Top Keywords

multiple organ
12
organ dysfunction
12
dysfunction syndrome
12
invasive organ
8
organ support
8
syndrome multiple
4
organ
4
mods
4
syndrome mods
4
mods common
4

Similar Publications

Background: Large language models (LLMs) have been proposed as valuable tools in medical education and practice. The Chinese National Nursing Licensing Examination (CNNLE) presents unique challenges for LLMs due to its requirement for both deep domain-specific nursing knowledge and the ability to make complex clinical decisions, which differentiates it from more general medical examinations. However, their potential application in the CNNLE remains unexplored.

View Article and Find Full Text PDF

Micro/nanoscale 3D bioelectrodes gain increasing interest for electrophysiological recording of electroactive cells. Although 3D printing has shown promise to flexibly fabricate 3D bioelectronics compared with conventional microfabrication, relatively-low resolution limits the printed bioelectrode for high-quality signal monitoring. Here, a novel multi-material electrohydrodynamic printing (EHDP) strategy is proposed to fabricate bioelectronics with sub-microscale 3D gold pillars for in vitro electrophysiological recordings.

View Article and Find Full Text PDF

The Gut in Critical Illness.

Curr Gastroenterol Rep

December 2025

Division of Pulmonary, Critical Care, and Sleep Medicine, Medical College of Wisconsin, 8701 West Watertown Plank Road, 8th Floor: HUB for Collaborative Medicine, Milwaukee, WI, 53226, USA.

Purpose Of Review: The purpose of this narrative review is to describe the mechanisms for gut dysfunction during critical illness, outline hypotheses of gut-derived inflammation, and identify nutrition and non-nutritional therapies that have direct and indirect effects on preserving both epithelial barrier function and gut microbiota during critical illness.

Recent Findings: Clinical and animal model studies have demonstrated that critical illness pathophysiology and interventions breach epithelial barrier function and convert a normally commensal gut microbiome into a pathobiome. As a result, the gut has been postulated to be the "motor" of critical illness and numerous hypotheses have been put forward to explain how it contributes to systemic inflammation and drives multiple organ failure.

View Article and Find Full Text PDF

Physical activity improves myocardial structure, function and resilience via complex, incompletely defined mechanisms. We explored effects of 1-2 wks swim training on cardiac and systemic phenotype in young male C57Bl/6 mice. Two wks forced swimming (90 min twice daily) resulted in cardiac hypertrophy (22% increase in heart:body weight, P<0.

View Article and Find Full Text PDF

Comparative Effectiveness of Outpatient COVID-19 Therapies in Solid Organ Transplant Recipients.

Transpl Infect Dis

January 2025

Division of Public Health, Infectious Diseases, and Occupational Medicine, Mayo Clinic, Rochester, Minnesota, USA.

Background: Multiple outpatient therapies have been developed for COVID-19 in high-risk individuals, but solid organ transplant (SOT) recipients were not well represented in controlled clinical trials. To date, few comparative studies have evaluated outcomes between outpatient therapies in this population.

Methods: We performed a retrospective cohort study using de-identified administrative claims data from OptumLabs Data Warehouse.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!