The present study determines the levels, vertical distributions, source apportionment and ecological risk of polycyclic aromatic hydrocarbons (PAHs) in ten sediment cores of coral reef in the Persian Gulf, Iran, one of the important oil polluted marine areas in the world. The main purpose of this study was to determine the spatio-vertical distribution pattern of PAHs pollution at the four hot spot zones on the Gulf: dense industrial, medium industrial, urbanized and non-impacted zones over the past few years. Sediment quality and ecological risk were also assessed in order to determine the pollutants of concern. In detail, 23 parent (PPAHs) and 16 alkylated PAHs (APAHs), along with retene and perylene, were determined in sediment cores (0-40 cm depth). The vertical distribution of all PAHs showed a wide variation among sampling stations and depths, with a decreasing trend of concentration from surface to bottom, and a peak at 12 cm. Total concentrations of PPAHs and APAHs ranged from 35 to 1927 ng g dw and 19 to 1794 ng g dw respectively, with the highest concentrations at the industrial zone. The diagnostic ratio for PAHs and perylene (3 to 1277 ng g dw) indicated mixed sources of PAHs, with dominance of petrogenic origins at the industrial zone and natural diagenetic inputs, respectively. The PAH concentration depicted a significant decreasing trend along the length of the core with an abrupt increase within the core length 12-20 cm. Temporal variations in contaminants can be linked to economic, coastal developments and industrial growth. Overall, the baseline data on geographical distribution, congener profiles, sources and vertical deposition of PAHs in the Persian Gulf area would be useful to establish proper monitoring plans for this sensitive ecosystem.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2019.133969DOI Listing

Publication Analysis

Top Keywords

sediment cores
12
persian gulf
12
gulf iran
8
ecological risk
8
decreasing trend
8
industrial zone
8
pahs
7
industrial
5
historical sedimentary
4
sedimentary deposition
4

Similar Publications

Evaluating multiannual sedimentary nutrient retention in agricultural two-stage channels.

Sci Rep

January 2025

Environmental Geochemistry group, Department of Geosciences and Geography, University of Helsinki, Helsinki, Finland.

The two-stage channel (TSC) design with a vegetated man-made floodplain has been recommended as an alternative to conventional re-dredging for managing suspended sediment (SS) and nutrient loads in agricultural streams. However, there are currently uncertainties surrounding the efficiency of TSCs, since mass balances covering the whole annual hydrograph and including different periods of the channel life cycle are lacking. This paper aims to improve understanding of the medium-term morphological development and sedimentary nutrient retention when a dredged, trapezoidal-shaped channel is converted into a TSC, using a mass balance estimate of nutrient and carbon retention from immediately after excavation until the establishment of approximate biogeochemical equilibrium retention.

View Article and Find Full Text PDF

It is challenging to explore the complex interactions between perfluoroalkyl substances (PFASs) and microplastics in lake sediments. The partnership of perfluoroalkyl substances (PFASs) and microplastics in lake sediments are difficult to determine experimentally. This study utilized sediment cores from Taihu Lake to reconstruct the coexistence history and innovatively reveal the collaboration between PFASs and microplastics by using post-hoc interpretable machine learning methods.

View Article and Find Full Text PDF

Estimation of the spatial variability of the New England Mud Patch geoacoustic properties using a distributed array of hydrophones and deep learninga).

J Acoust Soc Am

December 2024

Department of Applied Ocean Physics and Engineering, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA.

This article presents a spatial environmental inversion scheme using broadband impulse signals with deep learning (DL) to model a single spatially-varying sediment layer over a fixed basement. The method is applied to data from the Seabed Characterization Experiment 2022 (SBCEX22) in the New England Mud-Patch (NEMP). Signal Underwater Sound (SUS) explosive charges generated impulsive signals recorded by a distributed array of bottom-moored hydrophones.

View Article and Find Full Text PDF

The offshore oilfields in the North Sea area are increasingly employed for projects beyond oil production, like carbon capture and storage (CCS). Still, the fossil fuel production from mature fields is significant. It has raised environmental concerns associated with discharging produced waters (PW) and drilling mud into the sea.

View Article and Find Full Text PDF

Historical trends of metals and metalloids into lake and coastal sediments of Halong Bay (Vietnam).

Mar Pollut Bull

December 2024

Aix Marseille University, Université de Toulon, CNRS, IRD, MIO UM110, 13288 Marseille, France; Department Water-Environment-Oceanography, University of Science and Technology of Hanoi (USTH), Vietnamese Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Hanoi 100000, Viet Nam; IRD, Chulalongkorn University, 254 Henri Dunant Road, Pathumwan, 10330 Bangkok, Thailand.

Halong Bay (northern Vietnam) is heavily affected by human activities. Metals and metalloids (e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!