Background And Purpose: CR4056 is a first-in-class imidazoline-2 (I ) receptor ligand characterized by potent analgesic activity in different experimental animal models of pain. In a recent phase II clinical trial, CR4056 effectively reduced pain in patients with knee osteoarthritis. In the present study, we investigated the effects of CR4056 on PKCε translocation in vitro and on PKCε activation in vivo in dorsal root ganglia (DRG) neurons.
Experimental Approach: Effects of CR4056 on bradykinin-induced PKCε translocation were studied in rat sensory neurons by immunocytochemistry. PKCε activation was investigated by immunohistochemistry analysis of DRG from complete Freund's adjuvant-treated animals developing local hyperalgesia. The analgesic activity of CR4056 was tested on the same animals.
Key Results: CR4056 inhibited PKCε translocation with very rapid and long-lasting activity. CR4056 decreased hyperalgesia and phospho-PKCε immunoreactivity in the DRG neurons innervating the inflamed paw. The effect of CR4056 on PKCε translocation was blocked by pertussis toxin, implying that the intracellular pathways involved G proteins. The inhibition of PKCε translocation by CR4056 was independent of the α -adrenoeceptor and, surprisingly, was also independent of idazoxan-sensitive I binding sites. The I agonist 2BFI had no effect alone but potentiated the activity of low concentrations of CR4056.
Conclusions And Implications: Our results demonstrate that CR4056 shares the ability to inhibit PKCε translocation with other analgesics. Whether the inhibition of PKCε involves binding to specific subtype(s) of I receptors should be further investigated. If so, this would be a new mode of action of a highly specific I receptor ligand.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6976787 | PMC |
http://dx.doi.org/10.1111/bph.14845 | DOI Listing |
J Med Chem
January 2025
Xi'an Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Therapeutics Research, Xi'an 710021, China.
Multidrug-resistant (MDR) bacteria pose a global health threat, underscoring the need for new antibiotics. Lefamulin, the first novel-mechanism antibiotic approved by the FDA in decades, showcases pleuromutilins' promise due to low mutation frequency. However, their clinical use is limited by poor pharmacokinetics and organ toxicity.
View Article and Find Full Text PDFSci Adv
January 2025
Center for Microbiome Research of Med-X Institute, Shaanxi Provincial Key Laboratory of Sepsis in Critical Care Medicine, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, China.
The rare metal element molybdenum functions as a cofactor in molybdoenzymes that are essential to life in almost all living things. Molybdate can be captured by the periplasmic substrate-binding protein ModA of ModABC transport system in bacteria. We demonstrate that ModA plays crucial roles in growth, multiple metabolic pathways, and ROS tolerance in .
View Article and Find Full Text PDFSci Transl Med
January 2025
Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91052 Erlangen, Germany.
Dysregulation at the intestinal epithelial barrier is a driver of inflammatory bowel disease (IBD). However, the molecular mechanisms of barrier failure are not well understood. Here, we demonstrate dysregulated mitochondrial fusion in intestinal epithelial cells (IECs) of patients with IBD and show that impaired fusion is sufficient to drive chronic intestinal inflammation.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Plant Pathology, Key Laboratory of Plant Immunity, Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
Bacterial-fungal interaction (BFI) has significant implications for the health of host plants. While the diffusible antibiotic metabolite-mediated competition in BFI has been extensively characterized, the impact of intercellular contact remains largely elusive. Here, we demonstrate that the intercellular contact is a prevalent mode of interaction between beneficial soil bacteria and pathogenic filamentous fungi.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430070, People's Republic of China.
Interferon regulatory factor 3 (IRF3) is the key transcription factor in the type I IFN signaling pathway, whose activation is regulated by multiple posttranslational modifications. Here, we identify SMYD3, a lysine methyltransferase, as a negative regulator of IRF3. SMYD3 interacts with IRF3 and catalyzes the dimethylation of IRF3 at lysine 39.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!