The objectives of the current study are first, to evaluate the subjective evaluation of probe fitting stimulus properties, and second, to analyse the effects of different probe fittings on transient evoked otoacoustic emission (TEOAE) response and noise amplitudes in subjects. The Q methodology was used to sort 48 probe fittings differing in stimulus properties in seven categories from totally unacceptable to certainly acceptable. Further, TEOAE response and noise amplitudes were measured in one baseline condition with optimal probe fitting and eight experimental conditions with less than optimal probe fittings. The probe fittings were ranked by 18 participants, while the repeated measures design was performed in 34 ear. First, it was found that only 19.61% of all distributions of the probe fittings by the participants had a mutual correlation of at least 70.00%. Almost 60% of the variance of distributions was explained by 83.33% of the participants, although most probe fittings significantly differed from other fittings based on spectral broadness. Second, significant differences in TEOAE response and especially noise amplitudes between conditions were found. Further, TEOAE response and noise amplitudes between the baseline and experimental conditions were significantly different depending on ringing and spectral flatness of the stimulus. A substantial amount of subjectivity during TEOAE measurements is involved with regard to the evaluation of probe fitting stimulus properties. TEOAE response but especially noise amplitudes are influenced by varying stimulus parameters which stresses the importance of inspecting these parameters prior to or during EOAE measurements. Although more research is needed, some guidelines regarding these parameters are given which could improve the accuracy of TEOAEs in practice.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/14992027.2019.1656347 | DOI Listing |
Food Chem
January 2025
College of Food Science and Engineering, College of Chemistry and Materials Engineering, Institute of Ocean, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Jinzhou 121013, PR China. Electronic address:
In this study, a novel "OFF-ON" fluorescent probe MPZ ((E)-5-((10-ethyl-2-methoxy-10H-phenothiazin-3-yl)methylene)thiazolidine-2,4-dione) based on phenothiazine is synthesized, which can rapidly (7 s) detect biogenic amines (BAs) through deprotonation, utilizing both colorimetric and fluorescent dual channels. An app for visual portable detection of fish freshness, named "Visual Evaluation", is independently developed. This app integrates several functions, including image capture, editable scanning of red, green, and blue (RGB) values, data analysis fitting, data storage, and verification.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Institute of Semiconductor Technology (IHT), Technische Universität Braunschweig, Hans-Sommer-Straße 66, 38106 Braunschweig, Germany.
A novel piezoresistive cantilever microprobe (PCM) with an integrated electrothermal or piezoelectric actuator has been designed to replace current commercial PCMs, which require external actuators to perform contact-resonance imaging (CRI) of workpieces and avoid unwanted "forest of peaks" observed at large travel speed in the millimeter-per-second range. Initially, a PCM with integrated resistors for electrothermal actuation (ETA) was designed, built, and tested. Here, the ETA can be performed with a piezoresistive Wheatstone bridge, which converts mechanical strain into electrical signals by boron diffusion in order to simplify the production process.
View Article and Find Full Text PDFQuant Imaging Med Surg
January 2025
Paul. C. Lauterbur Research Centers for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
Background: Brain temperature signifies the thermal homeostasis of the tissue, and may serve as a marker for neuroprotective therapy. Currently, it remains challenging to map the human brain temperature with high spatial resolution. The thermal dependence of chemical exchange saturation transfer (CEST) effects of endogenous labile protons may provide a promising mechanism for the absolute brain temperature imaging.
View Article and Find Full Text PDFMicron
January 2025
Department of Materials Science and Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel. Electronic address:
Atomic-scale metrology in scanning transmission electron microscopy (STEM) allows to measure distances between individual atomic columns in crystals and is therefore an important aspect of their structural characterization. Furthermore, it allows to locally resolve strain in crystals and to calibrate precisely the pixel size in STEM. We present a method dedicated to the evaluation of interplanar spacing (d-spacing) based on an algorithm including curve fitting of processed high-angle annular dark-field STEM (HAADF STEM) signals.
View Article and Find Full Text PDFInt J Audiol
January 2025
German Institute of Hearing Aids, Lübeck, Germany.
Objective: To describe application scenarios of a mobile device that provides a practical means for showcasing potential hearing aid benefits.
Design: A prototype of a hearing aid demonstrator based on circumaural headphones and a mobile signal processing platform was developed, providing core functions of a hearing aid, including several gain presets, in a hygienic, robust, and easy-to-use form factor. Speech intelligibility outcomes with the demonstrator and broadband level adaptations as potential fitting references were compared to outcomes with the own hearing aids of hearing-impaired participants.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!