An electrochemical functionalization method is developed to fabricate N- and O-rich graphene films (F-RGO-60) with an expanded interlayer distance. In particular, the functionalization process could be completed within 60 seconds at room temperature, which is conducive to large-scale commercial applications. Electrochemical synthesis of F-RGO-60 leads to two synergetic effects simultaneously: (1) the expansion of the interlayer distance caused by a bubble effect, which leads to more exposure of the active surface area and (2) the introduction of N-doped sites and oxygen-containing functional groups, which not only improves the hydrophilicity of F-RGO-60 but also provides extra pseudocapacitance. It is worth mentioning that after electrochemical functionalization, F-RGO-60 can still maintain a high density of 1.47 g cm. Due to their optimal surface area, good electrolyte wettability and massive redox-active sites, the specific capacitance of F-RGO-60 films can reach up to 319.4 F cm (217.3 F g) at 1 A g in a three-electrode system, which is about 3.6 times larger than that of RGO films (60 F g). The integration of the low-cost preparation method and outstanding performance suggests that F-RGO-60 has great development prospects as supercapacitor electrode materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c9nr06001d | DOI Listing |
Chem Asian J
January 2025
Kanagawa University, Department of Chemistry, JAPAN.
Thermoelectric properties of undoped crystals of dibenzo[g,p]chrysene (DBC), deuterated DBC (DBC-d16), and 2,10-dimethyl-DBC (DBC-Me2) have been studied to obtain some insights into the relationship between the structural parameters of materials and the giant Seebeck effect. X-ray crystallography showed one-dimensional columnar packing with the interlayer distances (d) for DBC-d16, DBC, and DBC-Me2 were 3.78 Å, 3.
View Article and Find Full Text PDFSci Rep
January 2025
School of Information Technology, Jiangsu Open University, Nanjing, 210017, China.
Because of its dimensional characteristics, two-dimensional (2D) materials exhibit many special properties. The key to researching their features is to prepare high-quality larger-area monolayer 2D materials. Metal-assisted mechanical exfoliation method offers the possibility.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Huaqiao University College of Materials Science and Engineering, No.668 Jimei Avenue, Xiamen, Fujian, 361021, Xiamen, CHINA.
The advancement of tin-based perovskite solar cells (TPSCs) has been severely hindered by the poor controllability of perovskite crystal growth and the energy level mismatch between the perovskite and fullerene-based electron transport layer (ETL). Here, we synthesized three cis-configured pyridyl-substituted fulleropyrrolidines (PPF), specifically 2-pyridyl (PPF2), 3-pyridyl (PPF3), and 4-pyridyl (PPF4), and utilized them as precursor additives to regulate the crystallization kinetics during film formation. The spatial distance between the two pyridine groups in PPF2, PPF3, and PPF4 increases sequentially, enabling PPF4 to interact with more perovskite colloidal particles.
View Article and Find Full Text PDFACS Nano
January 2025
Center for High Pressure Science (CHiPS), State Key Laboratory of Metastable Materials Science & Technology, Yanshan University, Qinhuangdao 066004, China.
Moiré superlattices, created by stacking different van der Waals materials at twist angles, have emerged as a versatile platform for exploring intriguing phenomena such as topological properties, superconductivity, the quantum anomalous Hall effect, and the unconventional Stark effect. Additionally, the formation of moiré superlattice potential can generate spontaneous symmetry breaking, leading to an anisotropic optical response and electronic transport behavior. Herein, we propose a two-step chemical vapor deposition (CVD) strategy for synthesizing WS/SbS moiré superlattices.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Departament de Física, Campus Nord B4-B5, Universitat Politècnica de Catalunya, E-08034 Barcelona, Spain.
We predict that ultracold bosonic dipolar gases, confined within a multilayer geometry, may undergo self-assembling processes, leading to the formation of chain gases and solids. These dipolar chains, with dipoles aligned across different layers, emerge at low densities and resemble phases observed in liquid crystals, such as nematic and smectic phases. We calculate the phase diagram using quantum Monte Carlo methods, introducing a newly devised trial wave function designed for describing the chain gas, where dipoles from different layers form chains without in-plane long-range order.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!