A triangular shaped liquid crystal network is shown to undergo a continual, rocking chair-like oscillatory chaotic motion upon exposure to a surface of constant temperature. With the addition of an azobenzene chromophore, dual response is achieved, extending the actuation freedom towards a film that shows rocking and rolling motion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c9cc05329h | DOI Listing |
Adv Mater
January 2025
School of Mechanical Engineering, Southeast University, Nanjing, Jiangsu, 211189, P. R. China.
Biological structures exhibit autonomous and intelligent behaviors, such as movement, perception, and responses to environmental changes, through dynamic interactions with their surroundings. Inspired by natural organisms, future soft robots are also advancing toward autonomy, sustainability, and interactivity. This review summarizes the latest achievements in untethered soft robots based on 1D and 2D nanomaterials.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
School of Civil Engineering, Anhui Jianzhu University, Hefei 230601, China.
In recent years, there have been many studies focused on improving the performance of active materials; however, applying these materials to active machines still presents significant challenges. In this study, we introduce a light-powered self-translation system for an asymmetric friction slider using a liquid crystal elastomer (LCE) string oscillator. The self-translation system was composed of a hollow slide, two LCE fibers, and a mass ball.
View Article and Find Full Text PDFSmall
December 2024
Département de chimie, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada.
A liquid crystal elastomer (LCE) actuator capable of colorimetric humidity sensing is realized. The designed LCE features acid protonated amino azobenzene side groups in its structure, which endow the actuator with the hygroscopicity and act as the humidity reporter via color changes. Given that the protonated and deprotonated chromophore absorb visible light at different wavelengths, when the protonated LCE is under higher humidity, it absorbs more water that deprotonates azobenzene and leads to a change in color.
View Article and Find Full Text PDFSoft Matter
November 2024
CAS Key Laboratory of Mechanical Behavior and Design of Materials, Hefei National Laboratory for Physical Science at the Microscale, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230026, China.
Revealing the mechanism of directed transport of active matter is critical for advancing our fundamental understanding of non-equilibrium physics. Asymmetric microstructures are commonly used to rectify random movement of active particles. However, it remains unclear as to how to achieve unidirectional movement of active particles in long narrow channels.
View Article and Find Full Text PDFNat Mater
December 2024
Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland.
Driving synthetic materials out of equilibrium via dissipative mechanisms paves the way towards autonomous, self-sustained robotic motions. However, obtaining agile movement in diverse environments with dynamic steerability remains a challenge. Here we report a light-fuelled soft liquid crystal elastomer torus with self-sustained out-of-equilibrium movement.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!