Both subthalamic nucleus (STN) and caudal zona incerta (cZI) have been implicated as the optimal locus for deep brain stimulation (DBS) in Parkinson's disease (PD). We present a retrospective clinico-anatomical analysis of outcomes from DBS targeting both STN and cZI. Forty patients underwent bilateral DBS using an image-verified implantable guide tube/stylette technique. Contacts on the same quadripolar lead were placed in both STN and cZI. After pulse generator programming, contacts yielding the best clinical effect were selected for chronic stimulation. OFF-medication unified PD rating scale (UPDRS) part III scores pre-operatively and ON-stimulation at 1-2 year follow up were compared. Active contacts at follow-up were anatomically localised from peri-operative imaging. Overall, mean UPDRS part III score improvement was 55 ± 9% (95% confidence interval), with improvement in subscores for rigidity (59 ± 13%), bradykinesia (58 ± 13%), tremor (71 ± 24%) and axial features (36 ± 19%). Active contacts were distributed in the following locations: (1) within posterior/dorsal STN (50%); (2) dorsal to STN (24%); (3) in cZI (21%); and (4) lateral to STN (5%). When contacts were grouped by location, no significant differences between groups were seen in baseline or post-operative improvement in contralateral UPDRS part III subscores. We conclude that when both STN and cZI are targeted, active contacts are distributed most commonly within and immediately dorsal to STN. In a subgroup of cases, cZI contacts were selected for chronic stimulation in preference. Dual targeting of STN and cZI is feasible and may provide extra benefit compared with conventional STN DBS is some patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6704060 | PMC |
http://dx.doi.org/10.1038/s41531-019-0089-1 | DOI Listing |
Stereotact Funct Neurosurg
December 2023
Department of Clinical Science, Neurosciences, Umeå University, Umeå, Sweden.
Introduction: Deep brain stimulation (DBS) is an established treatment for Parkinson's disease (PD) and other movement disorders. The ventral intermediate nucleus of the thalamus is considered as the target of choice for tremor disorders, including tremor-dominant PD not suitable for DBS in the subthalamic nucleus (STN). In the last decade, several studies have shown promising results on tremor from DBS in the posterior subthalamic area (PSA), including the caudal zona incerta (cZi) located posteromedial to the STN.
View Article and Find Full Text PDFNeurosurg Rev
August 2022
Department of Neurology, University of Colorado School of Medicine, Aurora, CO, USA.
The neurosurgical treatment of movement disorders, primarily via deep brain stimulation (DBS), is a rapidly expanding and evolving field. Although conventional targets including the subthalamic nucleus (STN) and internal segment of the globus pallidus (GPi) for Parkinson's disease and ventral intermediate nucleus of the thalams (VIM) for tremor provide substantial benefit in terms of both motor symptoms and quality of life, other targets for DBS have been explored in an effort to maximize clinical benefit and also avoid undesired adverse effects associated with stimulation. These novel targets primarily include the rostral zona incerta (rZI), caudal zona incerta (cZI)/posterior subthalamic area (PSA), prelemniscal radiation (Raprl), pedunculopontine nucleus (PPN), substantia nigra pars reticulata (SNr), centromedian/parafascicular (CM/PF) nucleus of the thalamus, nucleus basalis of Meynert (NBM), dentato-rubro-thalamic tract (DRTT), dentate nucleus of the cerebellum, external segment of the globus pallidus (GPe), and ventral oralis (VO) complex of the thalamus.
View Article and Find Full Text PDFJ Neurol Neurosurg Psychiatry
January 2021
Department of Neurology, Union Hospital, Fujian Medical University, Fuzhou, China
To compare the efficacy of deep brain stimulation (DBS) and MRI-guided focused ultrasound (MRIgFUS) in parkinsonian tremor. We performed a network meta-analysis based on a Bayesian framework. We searched the literature for articles published between January 1990 and October 2020 using three databases: PubMed, Embase and Cochrane Library (The Cochrane Database of Systematic Reviews).
View Article and Find Full Text PDFNeuroimage Clin
June 2021
Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Department of Neurology, University of Michigan, Ann Arbor, MI, USA; Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA. Electronic address:
Background: Motor outcomes after subthalamic deep brain stimulation (STN DBS) for Parkinson disease (PD) vary considerably among patients and strongly depend on stimulation location. The objective of this retrospective study was to map the regions of optimal STN DBS for PD using an atlas-independent, fully individualized (N-of-1) tissue activation modeling approach and to assess the relationship between patient-level therapeutic volumes of tissue activation (VTAs) and motor improvement.
Methods: The stimulation-induced electric field for 40 PD patients treated with bilateral STN DBS was modeled using finite element analysis.
Neurol Med Chir (Tokyo)
December 2020
Department of Neurosurgery, Sapporo Medical University School of Medicine.
Several structures including subthalamic nucleus (STN), the caudal zona incerta (cZI), the prelemniscal radiation (Raprl), and the thalamic ventral intermediate nucleus (Vim) have been reported to be useful for improving symptoms of Parkinson's disease (PD). However, the effect of each target is still unclear. Therefore, we investigated each structure's effects and adverse effects using a directional lead implanted in the posterior STN adjacent to the cZI and Raprl in two patients with tremor-dominant PD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!