The rapid development of hardware and software for photoacoustic technologies is urging the establishment of dedicated tools for standardization and performance assessment. In particular, the fabrication of anatomical phantoms for photoacoustic imaging remains an open question, as current solutions have not yet gained unanimous support. Here, we propose that a hybrid material made of a water-in-oil emulsion of glycerol and polydimethylsiloxane may represent a versatile platform to host a broad taxonomy of hydrophobic and hydrophilic dyes and recapitulate the optical and acoustic features of bio tissue. For a full optical parameterization, we refer to Wróbel, [ Biomed. Opt. Express7, 2088 (2016)], where this material was first presented for optical imaging. Instead, here, we complete the picture and find that its speed of sound and acoustic attenuation resemble those of pure polydimethylsiloxane, i.e. respectively 1150 ± 30 m/s and 3.5 ± 0.4 dB/(MHz·cm). We demonstrate its use under a commercial B-mode scanner and a home-made A-mode stage for photoacoustic analysis to retrieve the ground-truth encoded in a multilayer architecture containing indocyanine green, plasmonic particles and red blood cells. Finally, we verify the stability of its acoustic, optical and geometric features over a time span of three months.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6701555 | PMC |
http://dx.doi.org/10.1364/BOE.10.003719 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!