The family oncogenes (, , and ) contribute to the genesis of many human cancers. Among them, amplification of the gene and over-expression of N-Myc protein are the most reliable risk factors in neuroblastoma patients. On the other hand, we previously found that a peptide derived from fibronectin, termed FNIII14, is capable of inducing functional inactivation in β1-integrins. Here, we demonstrate that inactivation of β1-integrin by FNIII14 induced proteasomal degradation in N-Myc of neuroblastoma cells with amplification. This N-Myc degradation by FNIII14 reduced the malignant properties, including the anchorage-independent proliferation and invasive migration, of neuroblastoma cells. An experiment using a mouse xenograft model showed that the administration of FNIII14 can inhibit tumor growth, and concomitantly a remarkable decrease in N-Myc levels in tumor tissues. Of note, the activation of proteasomal degradation based on β1-integrin inactivation is applicable to another Myc family oncoprotein, c-myc, which also reverses cancer-associated properties in pancreatic cancer cells. Collectively, β1-integrin inactivation could be a new chemotherapeutic strategy for cancers with highly expressed Myc. FNIII14, which is a unique pharmacological agent able to induce β1-integrin inactivation, may be a promising drug targeting Myc oncoproteins for cancer chemotherapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6697639PMC
http://dx.doi.org/10.18632/oncotarget.27131DOI Listing

Publication Analysis

Top Keywords

proteasomal degradation
12
β1-integrin inactivation
12
myc oncoproteins
8
neuroblastoma cells
8
inactivation
6
fniii14
5
inactivation beta1
4
beta1 integrin
4
integrin induces
4
induces proteasomal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!