Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Co-occurrence of (telomerase reverse transcriptase) promoter (TERTp) mutations with / mutations is associated with significantly more aggressive thyroid cancer. TERTp mutations are hypothesized to generate binding sites for ETS transcription factors, which are themselves activated by BRAF/RAS-stimulated MEK-ERK activity. To date, a detailed study of this mechanism has been limited to only a few cancer types, and we hypothesized that ETS factors involved in TERTp activation could vary between different cancers. Here we sought to identify ETS factor(s) required for TERTp activation in thyroid cancer, using a combination of analyses of TCGA data, and experimentation using thyroid cell models analyzed by quantitative reverse transcription-PCR, immunoprecipitation (IP), chromatin IP, and gene reporter assays. We found that ETV5 was abundantly expressed in papillary thyroid cancers from the TCGA data set, and in thyroid cancer cell line models. Furthermore, ETV5 was found to preferentially bind to the -124 bp(T) TERTp allele and stimulate transcription in thyroid cancer cells devoid of GA binding protein transcription factor (GABP) activity. We also found that ETV5 functionally cooperates with the transcription factor FOXE1 to further enhance TERTp activity, a mechanism that may at least partially explain why represents a significant genetic determinant of thyroid cancer risk. ETS factors that activate mutant TERTp vary between cancer types, and here we show for the first time that ETV5 demonstrates mutant allele-specific affinity for TERTp in thyroid cancer, a property that has previously only been attributable to GABP.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/thy.2018.0314 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!