In this study, a peptide-drug conjugate was designed and synthesized by connecting a transferrin receptor (TfR)-targeted binding peptide analog BP9a (CAHLHNRS) with doxorubicin (DOX) through N-succinimidyl-3-maleimidopropionate (SMP) as the cross-linker. Confocal laser scanning microscopy results indicated that free DOX mainly accumulated in the nuclei of both TfR overexpressed HepG2 hepatoma cells and L-O2 normal liver cells expressing low level of TfR; most of the BP9a-DOX conjugate displayed cytoplasmic location, and its cellular uptake by HepG2 cells was obviously reduced by TfR blockage test. Nevertheless, the cellular uptake of this conjugate by L-O2 cells was much less than that of free DOX. Meanwhile, the BP9a-DOX conjugate exhibited lower in vitro antiproliferative activity against HepG2 cells than free DOX, but its cytotoxic effect on L-O2 cells was decreased compared with that of free DOX. These results suggest that BP9a could be applied as a potential TfR-targeted peptide vector for selective drug delivery.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/cbdd.13613 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!